Search Results

You are looking at 11 - 20 of 3,438 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
  • All content x
Clear All Modify Search
Free access

Gemma Llauradó, Victòria Ceperuelo-Mallafré, Carme Vilardell, Rafael Simó, Pilar Gil, Albert Cano, Joan Vendrell, and José-Miguel González-Clemente

The aim of this study was to investigate the relationship between advanced glycation end products (AGEs) and arterial stiffness (AS) in subjects with type 1 diabetes without clinical cardiovascular events. A set of 68 patients with type 1 diabetes and 68 age- and sex-matched healthy subjects were evaluated. AGEs were assessed using serum concentrations of N-carboxy-methyl-lysine (CML) and using skin autofluorescence. AS was assessed by aortic pulse wave velocity (aPWV), using applanation tonometry. Patients with type 1 diabetes had higher serum concentrations of CML (1.18 vs 0.96 μg/ml; P=0.008) and higher levels of skin autofluorescence (2.10 vs 1.70; P<0.001) compared with controls. These differences remained significant after adjustment for classical cardiovascular risk factors. Skin autofluorescence was positively associated with aPWV in type 1 diabetes (r=0.370; P=0.003). No association was found between CML and aPWV. Skin autofluorescence was independently and significantly associated with aPWV in subjects with type 1 diabetes (β=0.380; P<0.001) after adjustment for classical cardiovascular risk factors. Additional adjustments for HbA1c, disease duration, and low-grade inflammation did not change these results. In conclusion, skin accumulation of autofluorescent AGEs is associated with AS in subjects with type 1 diabetes and no previous cardiovascular events. These findings indicate that determination of tissue AGE accumulation may be a useful marker for AS in type 1 diabetes.

Free access

Xue Jiang, Jia Xiao, Mulan He, Ani Ma, and Anderson O L Wong

Type II suppressor of cytokine signaling (SOCS) serve as feedback repressors for cytokines and are known to inhibit growth hormone (GH) actions. However, direct evidence for SOCS modulation of GH-induced insulin-like growth factor 1 (Igf1) expression is lacking, and the post-receptor signaling for SOCS expression at the hepatic level is still unclear. To shed light on the comparative aspects of SOCS in GH functions, grass carp was used as a model to study the role of type II SOCS in GH-induced Igf1 expression. Structural identity of type II SOCS, Socs1–3 and cytokine-inducible SH2-containing protein (Cish), was established in grass carp by 5’/3’-RACE, and their expression at both transcript and protein levels were confirmed in the liver by RT-PCR and LC/MS/MS respectively. In carp hepatocytes, GH treatment induced rapid phosphorylation of JAK2, STATs, MAPK, PI3K, and protein kinase B (Akt) with parallel rises in socs13 and cish mRNA levels, and these stimulatory effects on type II SOCS were shown to occur before the gradual loss of igf1 gene expression caused by prolonged exposure of GH. Furthermore, GH-induced type II SOCS gene expression could be negated by inhibiting JAK2, STATs, MEK1/2, P38 MAPK, PI3K, and/or Akt respectively. In CHO cells transfected with carp GH receptor, over-expression of these newly cloned type II SOCS not only suppressed JAK2/STAT5 signaling with GH treatment but also inhibited GH-induced grass carp Igf1 promoter activity. These results, taken together, suggest that type II SOCS could be induced by GH in the carp liver via JAK2/STATs, MAPK, and PI3K/Akt cascades and serve as feedback repressors for GH signaling and induction of igf1 gene expression.

Restricted access

B. Lahlou, B. Fossat, J. Porthé-Nibelle, L. Bianchini, and M. Guibbolini

ABSTRACT

Cyclic AMP levels were measured in freshly isolated hepatocytes of the rainbow trout. Compared with basal values, the average levels were increased up to 60 times in a dose-dependent manner either by mammalian glucagon (concentration range 1 nmol– 1 μmol/l; dose giving half maximum response (EC50) 0· 18 μmol/l) or by forskolin (concentration range 0·1–100 μmol/l; EC50 about 10 μmol/l). These stimulatory effects were partially inhibited by fish or mammalian neurohypophysial hormones used at relatively high concentrations (1–5 μmol/l). It is suggested that these results are evidence for the presence of V1-type receptors in fish hepatocytes. Together with previous results obtained with gills on the hormonal inhibition of adenylate cyclase activity, they suggest that teleost fish may possess only V1-type receptors (or two V1-related types), while the V2 receptors have evolved (or have become functional) in higher vertebrates.

J. Endocr. (1988) 119, 439–445

Free access

SJ Fisher, ZQ Shi, HL Lickley, S Efendic, M Vranic, and A Giacca

At supraphysiological levels, IGF-I bypasses some forms of insulin resistance and has been proposed as a therapeutic agent in the treatment of diabetes. Unfortunately, side effects of high-dose IGF-I (100-250 microg/kg) have precluded its clinical use. Low-dose IGF-I (40-80 microg/kg), however, shows minimal side effects but has not been systematically evaluated. In our previous study under conditions of declining glucose, low-dose IGF-I infusion was more effective in stimulating glucose utilization, but less effective in suppressing glucose production and lipolysis than low-dose insulin. However, under conditions of hyperglycemia, we could not observe any differential effects between high-dose infusions of IGF-I and insulin. To determine whether the differential effects of IGF-I and insulin are dose-related or related to the prevailing glucose level, 3 h glucose clamps were performed in the same animal model as in the previous studies, i.e. the moderately hyperglycemic (175 mg/dl) insulin-infused depancreatized dog, with additional infusions of low-dose IGF-I (67.8 microg/kg, i.e. 29.1 microg/kg bolus plus 0.215 microg/kg( )per min infusion; n=5) or insulin 49.5 mU/kg (9 mU/kg bolus plus 0.45 mU/kg per min; n=7). As in the previous study under conditions of declining glucose, low-dose IGF-I had significant metabolic effects in vivo, in our model of complete absence of endogenous insulin secretion. Glucose production was similarly suppressed with both IGF-I and insulin, by 54+/-3 and 56+/-2% s.e. (P=NS) respectively. Glucose utilization was stimulated to the same extent (IGF-I 5.2+/-0.2, insulin 5.5+/-0.3 mg/kg per min, P=NS). Glucagon, free fatty acid, glycerol, alanine and beta-hydroxybutyrate, were suppressed, while lactate and pyruvate levels were raised, similarly with IGF-I and insulin. We conclude that: (i) differential effects of IGF-I and insulin may be masked under hyperglycemic conditions, independent of the hormone dose; (ii) low-dose IGF-I has no selective advantage over additional insulin in suppressing glucose production and lipolysis, nor in stimulating glucose utilization during hyperglycemia and subbasal insulin infusion when insulin secretion is absent, as in type 1 diabetes mellitus.

Free access

K Fosgerau, P Galle, T Hansen, A Albrechtsen, C de Lemos Rieper, B Klarlund Pedersen, L Kongskov Larsen, A Randrup Thomsen, O Pedersen, M Bagge Hansen, and A Steensberg

Abstract

Interleukin-6 (IL6) is critically involved in inflammation and metabolism. About 1% of people produce IL6 autoantibodies (aAb-IL6) that impair IL6 signaling in vivo. We tested the hypothesis that the prevalence of such aAb-IL6 is increased in type 2 diabetic patients and that aAb-IL6 plays a direct role in causing hyperglycemia. In humans, the prevalence of circulating high-affinity neutralizing aAb-IL6 was 2.5% in the type 2 diabetic patients and 1% in the controls (odds ratio 2.5, 95% confidence interval 1.2–4.9, P=0.01). To test for the role of aAb-IL6 in causing hyperglycemia, such aAb-IL6 were induced in mice by a validated vaccination procedure. Mice with plasma levels of aAb-IL6 similar to the 2.5% type 2 diabetic patients developed obesity and impaired glucose tolerance (area under the curve (AUC) glucose, 2056±62 vs 1793±62, P=0.05) as compared with sham-vaccinated mice, when challenged with a high-fat diet. Mice with very high plasma levels of aAb-IL6 developed elevated fasting plasma glucose (mM, 4.8±0.4 vs 3.3±0.1, P<0.001) and impaired glucose tolerance (AUC glucose, 1340±38 vs 916±25, P<0.001) as compared with sham-control mice on normal chow. In conclusion, the prevalence of plasma aAb-IL6 at levels known to impair IL6 signaling in vivo is increased 2.5-fold in people with type 2 diabetes. In mice, matching levels of aAb-IL6 cause obesity and hyperglycemia. These data suggest that a small subset of type 2 diabetes may in part evolve from an autoimmune attack against IL6.

Free access

Birgitte N Friedrichsen, Nicole Neubauer, Ying C Lee, Vivian K Gram, Niels Blume, Jacob S Petersen, Jens H Nielsen, and Annette Møldrup

The incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), have been suggested to act as β-cell growth factors and may therefore be of critical importance for the maintenance of a proper β-cell mass. We have investigated the molecular mechanism of incretin-induced β-cell replication in primary monolayer cultures of newborn rat islet cells. GLP-1, GIP and the long-acting GLP-1 derivative, lira-glutide, increased β-cell replication 50–80% at 10–100 nM upon a 24 h stimulus, whereas glucagon at a similar concentration had no significant effect. The stimulatory effect of GLP-1 and GIP was efficiently mimicked by the adenylate cyclase activator, forskolin, at 10 nM (~90% increase) and was additive (~170–250% increase) with the growth response to human growth hormone (hGH), indicating the use of distinct intracellular signalling pathways leading to mitosis by incretins and cytokines, respectively. The response to both GLP-1 and GIP was completely blocked by the protein kinase A (PKA) inhibitor, H89. In addition, the phosphoinositol 3-kinase (PI3K) inhibitor wortmannin and the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059, both inhibited GLP-1- and GIP-stimulated proliferation. The p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, had no inhibitory effect on either GLP-1 or GIP stimulated proliferation. Cyclin Ds act as molecular switches for the G0/G1-S phase transition in many cell types and we have previously demonstrated hGH-induced cyclin D2 expression in the insulinoma cell line, INS-1. GLP-1 time-dependently induced the cyclin D1 mRNA and protein levels in INS-1E, whereas the cyclin D2 levels were unaffected. However, minor effect of GLP-1 stimulation was observed on the cyclin D3 mRNA levels. Transient transfection of a cyclin D1 promoter-luciferase reporter construct into islet monolayer cells or INS-1 cells revealed approximately a 2–3 fold increase of transcriptional activity in response to GLP-1 and GIP, and a 4–7 fold increase in response to forskolin. However, treatment of either cell type with hGH had no effect on cyclin D1 promoter activity. The stimulation of the cyclin D1 promoter by GLP-1 was inhibited by H89, wortmannin, and PD98059. We conclude that incretin-induced β-cell replication is dependent on cAMP/PKA, p42 MAPK and PI3K activities, which may involve transcriptional induction of cyclin D1. GLP-1, GIP and liraglutide may have the potential to increase β-cell replication in humans which would have significant impact on long-term diabetes treatment.

Free access

Raylene A Reimer

Glucagon-like peptide-1 (GLP-1) is a potent insulin secretagogue released from L-cells in the intestine. Meat hydrolysate (MH) is a powerful activator of GLP-1 secretion in the human enteroendocrine NCI-H716 cell line, but the mechanisms involved in nutrient-stimulated GLP-1 secretion are poorly understood. The objective of this study was to characterize the intracellular signalling pathways regulating MH- and amino acid-induced GLP-1 secretion. Individually, the pharmacological inhibitors, SB203580 (inhibitor of p38 mitogen-activated protein kinase (MAPK)), wortmannin (inhibitor of phosphatidyl inositol 3-kinase) and U0126 (inhibitor of mitogen activated or extracellular signal-regulated protein kinase (MEK1/2) upstream of extracellular signal-regulated kinase (ERK)1/2) all inhibited MH-induced GLP-1 secretion. Further examination of the MAPK pathway showed that MH increased the phosphorylation of ERK1/2, but not p38 or c-Jun N-terminal kinase over 2–15 min. Incubation with SB203580 resulted in a decrease in phosphorylated p38 MAPK and a concomitant increase in the phosphorylation of ERK1/2. Phosphorylation of ERK1/2 was augmented by co-incubation of MH with SB203580. Inhibitors of protein kinase A and protein kinase C did not inhibit MH-induced GLP-1 secretion. In contrast to non-essential amino acids, essential amino acids (EAAs) increased GLP-1 secretion and similar to MH, activated ERK1/2. However, they also activated p38-suggesting type of protein may affect GLP-1 secretion. In conclusion, there appears to be a crosstalk between p38 and ERK1/2 MAPK in the human enteroendocrine cell with the activation of ERK1/2 common to both MH and EAA. Understanding the cellular pathways involved in nutrient-stimulated GLP-1 secretion has important implications for the design of new treatments aimed at increasing endogenous GLP-1 release in type-2 diabetes and obesity.

Free access

N M Whalley, L E Pritchard, D M Smith, and A White

Proglucagon is cleaved to glucagon by prohormone convertase 2 (PC2) in pancreatic α-cells, but is cleaved to glucagon-like peptide-1 (GLP-1) by PC1 in intestinal L-cells. The aim of this study was to identify mechanisms which switch processing of proglucagon to generate GLP-1 in the pancreas, given that GLP-1 can increase insulin secretion and β-cell mass. The α-cell line, αTC1-6, expressed PC1 at low levels and GLP-1 was detected in cells and in culture media. GLP-1 was also found in isolated human islets and in rat islets cultured for 7 days. High glucose concentrations increased Pc1 gene expression and PC1 protein in rat islets. High glucose (25 mM) also increased GLP-1 but decreased glucagon secretion from αTC1-6 cells suggesting a switch in processing to favour GLP-1. Three G protein-coupled receptors, GPR120, TGR5 and GPR119, implicated in the release of GLP-1 from L-cells are expressed in αTC1-6 cells. Incubation of these cells with an agonist of TGR5 increased PC1 promoter activity and GLP-1 secretion suggesting that this is a mechanism for switching processing to GLP-1 in the pancreas. Treatment of isolated rat islets with streptozotocin caused β-cell toxicity as evidenced by decreased glucose-stimulated insulin secretion. This increased GLP-1 but not glucagon in the islets. In summary, proglucagon can be processed to GLP-1 in pancreatic cells. This process is upregulated by elevated glucose, activation of TGR5 and β-cell destruction. Understanding this phenomenon may lead to advances in therapies to protect β-cell mass, and thereby slow progression from insulin resistance to type 2 diabetes.

Free access

SJ Conroy, I Green, G Dixon, PM Byrne, J Nolan, YH Abdel-Wahab, N McClenaghan, PR Flatt, and P Newsholme

We have previously reported that newly diagnosed Type-1 diabetic patient sera potently suppressed insulin secretion from a clonal rat pancreatic beta-cell line (BRIN BD11) but did not alter cell viability. Here, we report that apoptosis in BRIN BD11 cells incubated in various sera types (fetal calf serum (FCS), normal human serum and Type-1 diabetic patient) was virtually undetectable. Although low levels of necrosis were detected, these were not significantly different between cells incubated in sera from different sources. ATP levels were reduced by approximately 30% while nitrite production increased twofold from BRIN BD11 cells incubated for 24 h in the presence of Type-1 diabetic patient sera compared with normal human sera. Additionally, ATP levels were reduced by approximately 40% and DNA fragmentation increased by more than 20-fold in BRIN BD11 cells incubated in FCS in the presence of a pro-inflammatory cytokine cocktail (interleukin-1beta, tumour necrosis factor-alpha and interferon-gamma), compared with cells incubated in the absence of cytokines. Nitric oxide production from BRIN BD11 cells was markedly increased (up to 10-fold) irrespective of sera type when the cytokine cocktail was included in the incubation medium. Type-1 diabetic patient sera significantly (P<0.001) raised basal levels of intracellular free Ca(2+ )concentration ([Ca(2+)](i)) in BRIN BD11 cells after a 24-h incubation. The alteration in [Ca(2+)](i) concentration was complement dependent, as removal of the early complement components C1q and C3 resulted in a significant reduction (P<0.01) of sera-induced [Ca(2+)](i )changes. We propose that the mechanism of Type-1 diabetic patient sera-induced inhibition of insulin secretion from clonal beta-cells may involve complement-stimulated elevation of [Ca(2+)](i) which attenuates the nutrient-induced insulin secretory process possibly by desensitizing the cell to further changes in Ca(2+).

Free access

Ronald Gonzalez, Benjamin K Reingold, Xiaodong Gao, Mandeep P Gaidhu, Robert G Tsushima, and Suraj Unniappan

Nesfatin-1 is a recently discovered multifunctional metabolic hormone abundantly expressed in the pancreatic islets. The main objective of this study is to characterize the direct effects of nesfatin-1 on insulin secretion in vitro using MIN6 cells and islets isolated from C57BL/6 mice. We also examined the expression of the nesfatin-1 precursor protein, nucleobindin 2 (NUCB2) mRNA, and nesfatin-1 immunoreactivity (ir) in the islets of normal mice and in the islets from mice with streptozotocin-induced type 1 diabetes and diet-induced obese (DIO) mice with type 2 diabetes. Nesfatin-1 stimulated glucose-induced insulin release in vitro from mouse islets and MIN6 cells in a dose-dependent manner. No such stimulation in insulin secretion was found when MIN6 cells/islets were incubated with nesfatin-1 in low glucose. In addition, a fourfold increase in nesfatin-1 release from MIN6 cells was observed following incubation in high glucose (16.7 mM) compared to low glucose (2 mM). Furthermore, we observed a significant reduction in both NUCB2 mRNA expression and nesfatin-1-ir in the pancreatic islets of mice with type 1 diabetes, while a significant increase was observed in the islets of DIO mice. Together, our findings indicate that nesfatin-1 is a novel insulinotropic peptide and that the endogenous pancreatic islet NUCB2/nesfatin is altered in diabetes and diet-induced obesity.