Search Results

You are looking at 171 - 180 of 748 items for :

  • "insulin sensitivity" x
  • All content x
Clear All
Free access

J Cornish, KE Callon, U Bava, C Lin, D Naot, BL Hill, AB Grey, N Broom, DE Myers, GC Nicholson, and IR Reid

Fat mass is an important determinant of bone density, but the mechanism of this relationship is uncertain. Leptin, as a circulating peptide of adipocyte origin, is a potential contributor to this relationship. Recently it was shown that intracerebroventricular administration of leptin is associated with bone loss, suggesting that obesity should be associated with low bone mass, the opposite of what is actually found. Since leptin originates in the periphery, an examination of its direct effects on bone is necessary to address this major discrepancy. Leptin (>10(-11) m) increased proliferation of isolated fetal rat osteoblasts comparably with IGF-I, and these cells expressed the signalling form of the leptin receptor. In mouse bone marrow cultures, leptin (>or=10(-11) m) inhibited osteoclastogenesis, but it had no effect on bone resorption in two assays of mature osteoclasts. Systemic administration of leptin to adult male mice (20 injections of 43 micro g/day over 4 weeks) reduced bone fragility (increased work to fracture by 27% and displacement to fracture by 21%, P<0.001). Changes in tibial histomorphometry were not statistically significant apart from an increase in growth plate thickness in animals receiving leptin. Leptin stimulated proliferation of isolated chondrocytes, and these cells also expressed the signalling form of the leptin receptor. It is concluded that the direct bone effects of leptin tend to reduce bone fragility and could contribute to the high bone mass and low fracture rates of obesity. When administered systemically, the direct actions of leptin outweigh its centrally mediated effects on bone, the latter possibly being mediated by leptin's regulation of insulin sensitivity.

Free access

AE Tsirka, EM Gruetzmacher, DE Kelley, VH Ritov, SU Devaskar, and RH Lane

Uteroplacental insufficiency causes intrauterine growth retardation (IUGR) and subsequent low birth weight, which predisposes the affected newborn towards adult Syndrome X. Individuals with Syndrome X suffer increased morbidity from adult ischemic heart disease. Myocardial ischemia initiates a defensive increase in cardiac glucose metabolism, and individuals with Syndrome X demonstrate reduced insulin sensitivity and reduced glucose uptake. Glucose transporters GLUT1 and GLUT4 facilitate glucose uptake across cardiac plasma membranes, and hexokinase II (HKII) is the predominant hexokinase isoform in adult cardiac tissue. We therefore hypothesized that GLUT1, GLUT4 and HKII gene expression would be reduced in heart muscle of growth-retarded rats, and that reduced gene expression would result in reduced myocardial glucose uptake. To prove this hypothesis, we measured cardiac GLUT1 and GLUT4 mRNA and protein in control IUGR rat hearts at day 21 and at day 120 of life. HKII mRNA quantification and 2-deoxyglucose-uptake studies were performed in day-120 control and IUGR cardiac muscle. Both GLUT1 and GLUT4 mRNA and protein were significantly reduced at day 21 and at day 120 of life in IUGR hearts. HKII mRNA was also reduced at day 120. Similarly, both basal and insulin-stimulated glucose uptake were significantly reduced in day-120 IUGR cardiac muscle. We conclude that adult rats showing IUGR as a result of uteroplacental insufficiency express significantly less cardiac GLUT1 and GLUT4 mRNA and protein than control animals (which underwent sham operations), and that this decrease in gene expression occurs in parallel with reduced myocardial glucose uptake. We speculate that this reduced GLUT gene expression and glucose uptake contribute towards mortality from ischemic heart disease seen in adults born with IUGR.

Free access

M Alexandra Sorocéanu, Dengshun Miao, Xiu-Ying Bai, Hanyi Su, David Goltzman, and Andrew C Karaplis

Thiazolidinediones (TZDs) increase peripheral tissue insulin sensitivity in patients with type 2 diabetes mellitus by activating the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ). In bone marrow stromal cell cultures and in vivo, activation of PPARγ by high doses (20 mg/kg/day) of TZDs has been reported to alter stem cell differentiation by promoting commitment of progenitor cells to the adipocytic lineage while inhibiting osteoblastogenesis. Here, we have examined the in vivo effects of low-dose rosiglitazone (3 mg/kg/day) on bone, administered to mice by gavage for 90 days. Rosiglitazone-treated mice had increased weight when compared with controls, with no significant alterations in serum levels of glucose, calcium or parathyroid hormone (PTH). Bone mineral density (BMD) at the lumbar vertebrae (L1–L4), ilium/sacrum, and total body was diminished by rosiglitazone treatment. Histologically, bone was characterized by decreased trabecular bone volume and increased marrow space with no significant change in bone marrow adipocity. Decreased osteoblast number and activity due to increased apoptotic death of osteoblasts and osteocytes was apparent while osteoclast parameters and serum levels of osteocalcin, alkaline phosphatase activity, and leptin were unaltered by rosiglitazone treatment. Therefore, the imbalance in bone remodeling that follows rosiglitazone administration arises from increased apoptotic death of osteogenic cells and diminished bone formation leading to the observed decrease in trabecular bone volume and BMD. These novel in vivo effects of TZDs on bone are of clinical relevance as patients with type 2 diabetes mellitus and other insulin resistant states treated with these agents may potentially be at increased risk of osteoporosis.

Restricted access

S C Blair, I D Caterson, and G J Cooney


The effect of adrenalectomy (ADX) on glucose tolerance and insulin secretion was examined in conscious mice made obese by a single injection of gold thioglucose (GTG). To facilitate such a study a chronic jugular catheter was implanted into the mice at the time of performing the ADX or sham-ADX. One week after ADX, the body weight (GTG-obese+sham-ADX, 35·6 ± 0·6 g; GTG-obese+ADX, 33·1 ± 0·6 g; P<0·05) and glycogen content of the liver (GTG-obese+sham-ADX, 2·4 ± 0·2 μmol/liver; GTG-obese+ADX, 1·6 ± 0·1 μmol/liver; P<0·05) of GTG-injected mice were reduced. Plasma glucose concentrations, in both the overnight fasted state and in response to an intravenous glucose load were also reduced following ADX of GTG-obese mice, but not to the level of the sham-ADX control mice. However, ADX completely normalized plasma insulin concentrations in both the basal state and also in response to a glucose load, as indicated by the finding that the integrated insulin secretory response of the ADX GTG-obese mice was not different from that of sham-ADX control mice (control+sham-ADX, 192 ± 5 min.μU/ml; GTG-obese+ADX, 196 ± 10 min.μU/ml). The effects of ADX on carbohydrate metabolism were not restricted to GTG-injected mice, as ADX of control mice decreased fasting plasma glucose levels and reduced liver glycogen and plasma insulin concentrations. The normalization of insulin release in ADX GTG-obese mice occurred while these mice were still obese and glucose intolerant. This suggests that the decreased insulin release was not due solely to an ADX-induced improvement in insulin sensitivity and/or weight loss. Removal of central glucocorticoid effects on the parasympathetic stimulation of insulin release may play a role in the reduced insulin release observed after ADX of obese and control mice, although peripheral effects of glucocorticoid deficiency on glycogen synthesis in the liver may also influence whole animal glucose homeostasis.

Journal of Endocrinology (1996) 148, 391–398

Restricted access

A. J. Bradley and D. M. Stoddart


The effects of cortisol, ACTH, adrenalin and insulin on indices of carbohydrate, fat and protein metabolism were investigated in the conscious marsupial sugar glider Petaurus breviceps.

Short-term i.v. infusion of cortisol at dose rates of 0·02, 0·2 and 1·0 mg/kg per h caused the plasma glucose concentration to rise sharply from the normal range of 3·3–4·4 to 8·1–8·7 mmol/l at the end of the infusion period without significant alteration in plasma free fatty acid (FFA), amino acid or urea concentrations. Infusions of ACTH at dose rates of 0·02, 0·06 and 0·45 IU/kg per h caused a similar rise in plasma glucose concentration; however, this was now accompanied by an elevation in plasma FFA concentration, but again without significant changes in either plasma amino acid or urea concentrations. Infusion of adrenalin at 10 μg/kg per h caused an increase in the plasma concentrations of both glucose and FFA. Intravenous injections of 0·15 IU insulin/kg caused a rapid and marked decrease in the plasma glucose concentration within 30 min and an increase in the plasma free cortisol concentration. Associated with this change was a marked rise in the plasma concentration of both FFA and free cortisol. The rise in free cortisol was, however, significantly reduced by infusion of glucose. Pretreatment with five daily i.m. injections of 1 mg cortisol acetate/kg, which produced an increase in plasma free cortisol concentration to near the maximum of the physiological range, caused a marked reduction in insulin sensitivity. Cortisol pretreatment caused an increase in the plasma FFA and amino acid concentrations.

Petaurus breviceps is highly sensitive to the metabolic effects of glucocorticoids and is similar in this respect to the brush-tailed possum Trichosurus vulpecula. The interactive effects between insulin and glucocorticoids on carbohydrate, fat and protein metabolism in Petaurus breviceps are similar to those shown by Trichosurus vulpecula and some eutherian mammals but contrast with the pattern described for two macropodid marsupials, the red kangaroo Macropus rufus and the quokka Setonix brachyurus.

Journal of Endocrinology (1990) 127, 203–212

Free access

DE Livingstone, CJ Kenyon, and BR Walker

Obesity has been associated with alterations in glucocorticoid metabolism in both man and rodents, but the underlying mechanisms remain undefined. We have previously reported tissue-specific alterations in 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) in obese Zucker rats predicting that reactivation of corticosterone is decreased in liver but increased in omental fat. The mechanisms of dysregulation of 11 beta-HSD1 in obesity are not known, and in this study we have investigated the potential role of glucocorticoids and insulin. In one experiment lean and obese Zucker rats were adrenalectomised, and in a second experiment they were sensitised to insulin by treatment with either metformin or rosiglitazone. Adrenalectomy (ADX) of obese animals attenuated weight gain, normalised hepatic 11 beta-HSD1 kinetics by an effect on V(max) (V(max)in sham-operated animals, 6.6+/-1.1 nmol/min per mg in lean vs 3.4+/-0.6 in obese, P<0.01; in ADX animals 5.9+/-1.1 in lean vs 6.9+/-1.8 in obese, NS), and reversed the difference in omental fat 11 beta-HSD1 activity (18.9+/-4.2% in lean ADX vs 8.2+/-2.3 in obese ADX, P=0.03). Both metformin and rosiglitazone improved insulin sensitivity in obese, but not lean animals, and had no effect on 11 beta-HSD1 activity in either liver or fat. However, both treatments normalised adrenal hypertrophy in obese animals (48+/-29 mg in obese vehicle vs 37+/-1.2 in metformin and 38+/-1.8 in rosiglitazone treated, both P<0.01), and rosiglitazone tended to attenuate hypercorticosteronaemia in obese rats. Neither treatment attenuated weight gain; in fact, weight gain was enhanced by rosiglitazone in obese rats. In summary, altered 11 beta-HSD1 activity in obese Zucker rats is reversible following adrenalectomy, but the mechanism is unclear since adrenalectomy also normalises many other metabolic abnormalities. The current study suggests that hyperinsulinaemia is not responsible for tissue-specific dysregulation of 11 beta-HSD1. However, insulin sensitisation did reverse adrenal hypertrophy, suggesting that hyperinsulinaemia may be a key factor contributing to activation of the hypothalamic- pituitary-adrenal (HPA) axis in obesity independently of tissue-specific changes in 11 beta-HSD1.

Free access

Y Furuhata, T Yonezawa, M Takahashi, and M Nishihara

GH is known to regulate glucose and lipid metabolism as well as body growth. Controversy exists as to whether GH-deficient adults are indeed insulin sensitive or insulin resistant. In GH-deficient animal models, however, no clear observation indicating insulin resistance has been made, while increased insulin sensitivity has been reported in those animals. We have produced human GH (hGH) transgenic rats characterized by low circulating hGH levels and virtually no endogenous rat GH secretion. Although the body length of the transgenic rat is normal, they develop massive obesity and insulin resistance, indicating that the transgenic rat is a good model for the analysis of insulin resistance under GH deficiency. In this study, we have examined how GH deficiency affects the early steps of insulin signaling in the liver of the transgenic rat. Circulating glucose and insulin concentrations were significantly higher in the transgenic rats than in their littermates. In addition, impaired glucose tolerance was observed in the transgenic rat. The amount of insulin receptor was smaller in the liver of the transgenic rat, resulting in decreased tyrosine phosphorylation in response to insulin stimulation. The amounts of insulin receptor substrate-1 and -2 (IRS-1 and -2) and insulin-stimulated phosphorylation of IRSs were also smaller in the transgenic rat. Despite the decrease in tyrosine phosphorylation levels of IRSs being mild to moderate (45% for IRS-1 and 16% for IRS-2), associated phosphatidylinositol 3-kinase (PI3-kinase) activity was not increased by insulin stimulation at all in the transgenic rat. To elucidate whether this discrepancy resulted from the alteration in binding of the p85 subunit of PI3-kinase to phosphotyrosine residues of the IRSs, we determined the amount of p85 subunit in the immunocomplexes with anti-phosphotyrosine antibody. Insulin did not affect the amount of p85 subunit associated with phosphotyrosine in the transgenic rats, while it significantly increased in the controls, indicating that alteration may have occurred at the sites of phosphorylated tyrosine residues in IRSs. These results suggest that GH deficiency in the transgenic rat leads to impairment in at least the early steps of insulin signaling in the liver with a resultant defect in glucose metabolism.

Free access

BD Rodgers, M Bernier, and MA Levine

Adipocyte beta-adrenergic sensitivity is compromised in animal models of obesity and type 2 diabetes. Although changes in the membrane concentrations of G-protein alpha subunits (Galpha) have been implicated, it remains to be determined how these changes are affected by insulin resistance in the different animal models. Because previous studies used young animals, we measured the concentrations of Galpha and Gbeta subunits in epididymal fat from aged (48 weeks old) db/db mice and from their lean littermates to more closely reproduce the model of type 2 diabetes mellitus. Levels of immunoreactive Galphas, Galphai(1/2), Galphao and Galphaq/11 were all significantly greater in adipocyte membranes from the db/db mice than in membranes from their lean non-diabetic littermate controls. Levels of Galphai(1) and Galphai(2) were also individually determined and although they appeared to be slightly higher in db/db membranes, these differences were not significant. Although the levels of both Galphas isoforms were elevated, levels of the 42 and 46 kDa proteins rose by approximately 42% and 20% respectively, indicating differential protein processing of Galphas. By contrast, levels of Galphai3 were similar in the two groups. The levels of common Gbeta and Gbeta2 were also elevated in db/db mice, whereas Gbeta1 and Gbeta4 levels were not different. To determine whether these changes were due to insulin resistance per se or to elevated glucocorticoid production, G-protein subunit levels were quantified in whole cell lysates from 3T3-L1 adipocytes that were stimulated with different concentrations of either insulin or corticosterone. Although none of the subunit levels was affected by insulin, the levels of both Galphas isoforms were increased equally by corticosterone in a concentration-dependent manner. Since glucocorticoids are known regulators of Galphas gene expression in many cell types and in adipocytes from diabetic rodents, the results presented herein appear to more accurately reflect diabetic pathophysiology than do those of previous studies which report a decrease in Galphas levels. Taken together, these results indicate that most of the selective changes in G-protein subunit production in adipocytes from this animal model of type 2 diabetes may not be due to diminished insulin sensitivity, but may be due to other endocrine or metabolic abnormalities associated with the diabetic phenotype.

Free access

Hu Huang, Kaoruko Tada Iida, Hirohito Sone, Tomotaka Yokoo, Nobuhiro Yamada, and Ryuichi Ajisaka

). In addition, various recent studies have shown that adiponectin influences glucose homeostasis and insulin sensitivity. Increased serum adiponectin concentration is associated with improvement in glucose tolerance and insulin sensitivity in both

Free access

Victor Wong, Linda Szeto, Kristine Uffelman, I George Fantus, and Gary F Lewis

resistance and the development of cardiovascular complications suggests either a direct or an indirect causal mechanism and emphasizes the need to develop therapeutic strategies that improve insulin sensitivity and its co-morbidities. Vasopeptidase