Search Results

You are looking at 111 - 120 of 3,651 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
Clear All Modify Search
Free access

Qingling Huang, Elena Timofeeva and Denis Richard

The present study was conducted to investigate the long-term effects of subchronic elevation of central leptin levels on the expression of corticotropin-releasing factor (CRF) and its types 1 and 2 receptors in the brain of rats subjected to treadmill running-induced stress. PBS or recombinant murine leptin was infused continuously for a period of 5 days into the third ventricle of rats with the aid of osmotic minipumps at a delivery rate of 2 μg/day. On the fifth day of infusion, rats were killed under resting conditions or after a session of treadmill running, which is known to induce a stress response in rats. Leptin treatment significantly decreased food intake, body weight, white adipose tissue weight, glucose and insulin plasma contents, and blunted the treadmill running-induced elevation in plasma levels of corticosterone. Leptin infusion prevented stress-induced de novo synthesis of CRF in the paraventricular hypothalamic nucleus (PVN), which was measured using the intronic probe for CRF heteronuclear RNA. The induction of the type 1 CRF receptor (CRF1R) in the PVN and supraoptic nucleus in running rats was also significantly blunted by leptin. In contrast, leptin treatment strongly increased the expression of type 2 CRF receptor (CRF2R) in the ventromedial hypothalamic nucleus (VMH). The present results suggest that subchronic elevation of central levels of leptin blunts treadmill running-induced activation of the hypothalamic–pituitary–adrenal axis through the inhibition of activation of the CRFergic PVN neurons, and potentially enhances the anorectic CRF effects via the stimulation of expression of CRF2R in the VMH.

Free access

J Claustre, S Brechet, P Plaisancie, JA Chayvialle and JC Cuber

Postprandial release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L cells results from both nutrient transit in the ileal lumen and neural drive of endocrine cells. The adrenosympathetic system and its effectors have been shown to induce secretion of L cells in vivo or in vitro. Because these transmitters act through three receptors, beta, alpha1, alpha2, coupled to different intracellular pathways, we evaluated the responses of L cells to specific agonists, using the model of isolated vascularly perfused rat ileum. General stimulation of adrenergic receptors with epinephrine (10(-7) M) induced significant GLP-1 and PYY secretions (94+/-38 and 257+/-59 fmol/8 min respectively) which were abolished upon propranolol (10(-7) M) pretreatment and strongly decreased upon infusion with 10(-8) M prazosin. Blockade of alpha2-receptors with idazoxan (10(-8) M) did not alter epinephrine-induced peptide secretion. The beta-adrenergic agonist isoproterenol (10(-6) M) infused for 30 min induced a transient release of GLP-1 and PYY (integrated release over the 8 min of the peak secretion: 38+/-16 and 214+/-69 fmol for GLP-1 and PYY respectively, P<0.05). Because terbutaline but not dobutamine or BRL 37,344 (10(-5) M) induced significant GLP-1 and PYY secretions (135+/-30 and 305+/-39 fmol/8 min respectively), isoproterenol-induced secretions are suggested to result mainly from stimulation of the beta2-isoreceptor type. In contrast, the alpha1-agonist phenylephrine (10(-7) M) did not stimulate peptide release. When co-infused with 10(-6) M or 10(-7) M isoproterenol, 10(-7) M phenylephrine raised GLP-1 release to 174+/-53 and 108+/-28 fmol/8 min respectively (vs 38+/-16 and 35+/-10 fmol/8 min for isoproterenol alone, P<0.05) whereas PYY secretion was not significantly increased. Clonidine (10(-7) M), an alpha2-agonist, induced a moderate and delayed increase of GLP-1 and PYY but abolished the isoproterenol-induced peptide secretion. Our results showed that general stimulation of adrenergic receptors stimulates the secretory activity of ileal endocrine L cells. The net peptide secretion results from the activation of the beta2-isoreceptor type. Additionally, GLP-1 and PYY secretions are positively modulated by alpha1-receptor stimulation and inhibited by alpha2-receptor activation upon beta-receptor occupation.

Free access

Matthew E Picha, Marc J Turano, Christian K Tipsmark and Russell J Borski

Compensatory growth (CG) is a period of growth acceleration that exceeds normal rates after animals are alleviated of certain growth-stunting conditions. In hybrid striped bass (HSB, Morone chrysops×Morone saxatilis), 3 weeks of complete feed restriction results in a catabolic state that, when relieved, renders a subsequent phase of CG. The catabolic state was characterized by depressed levels of hepatic Type I and II GH receptor (ghr1, ghr2) and igf1 mRNA, along with considerable decreases in plasma Igf1. The state of catabolism also resulted in significant declines in hepatic igf2 mRNA and in circulating 40 kDa Igf-binding protein (Igfbp). Skeletal muscle expression of ghr2 mRNA was significantly increased. Upon realimentation, specific growth rates (SGRs) were significantly higher than sized-matched controls, indicating a period of CG. Hepatic ghr1, ghr2, igf1 and igf2 mRNA levels along with plasma Igf1 and 40 kDa Igfbp increased rapidly during realimentation. Plasma Igf1 and total hepatic igf2 mRNA were significantly correlated to SGR throughout the study. Skeletal muscle igf1 mRNA also increased tenfold during CG. These data suggest that endocrine and paracrine/autocrine components of the GH–Igf axis, namely igf1, igf2, and ghr1 and ghr2, may be involved in CG responses in HSB, with several of the gene expression variables exceeding normal levels during CG. We also demonstrate that normalization of hepatic mRNA as a function of total liver production, rather than as a fraction of total RNA, may be a more biologically appropriate method of quantifying hepatic gene expression when using real-time PCR.

Free access

Z H Liu, K Tsuchida, T Matsuzaki, Y L Bao, A Kurisaki and H Sugino

Activin type II receptors (ActRIIs) including ActRIIA and ActRIIB are serine/threonine kinase receptors that form complexes with type I receptors to transmit intracellular signaling of activins, nodal, myostatin and a subset of bone morphogenetic proteins. ActRIIs are unique among serine/threonine kinase receptors in that they associate with proteins having PSD-95, Discs large and ZO-1 (PDZ) domains. In our previous studies, we reported specific interactions of ActRIIs with two independent PDZ proteins named activin receptor-interacting proteins 1 and 2 (ARIP1 and ARIP2). Overexpression of both ARIP1 and ARIP2 reduce activin-induced transcription. Here, we report the isolation of two isoforms of ARIP2 named ARIP2b and 2c. ARIP2, ARIP2b and ARIP2c recognize COOH-terminal residues of ActRIIA that match a PDZ-binding consensus motif. ARIP2 and its isoforms have one PDZ domain in the NH2-terminal region, and interact with ActRIIA. Although PDZ domains containing GLGF motifs of ARIP2b and 2c are identical to that of ARIP2, their COOH-terminal sequences differ from that of ARIP2. Interestingly, unlike ARIP2, overexpression of ARIP2b or 2c did not affect ActRIIA internalization. ARIP2b/2c inhibit inhibitory actions of ARIP2 on activin signaling. ARIP2 is widely distributed in mouse tissues. ARIP2b/2c is expressed in more restricted tissues such as heart, brain, kidneys and liver. Our results indicate that although both ARIP2 and ARIP2b/2c interact with activin receptors, they regulate ActRIIA function in a different manner.

Free access

Jonathan M Mudry, Julie Massart, Ferenc L M Szekeres and Anna Krook

TWIST proteins are important for development of embryonic skeletal muscle and play a role in the metabolism of tumor and white adipose tissue. The impact of TWIST on metabolism in skeletal muscle is incompletely studied. Our aim was to assess the impact of TWIST1 and TWIST2 overexpression on glucose and lipid metabolism. In intact mouse muscle, overexpression of Twist reduced total glycogen content without altering glucose uptake. Expression of TWIST1 or TWIST2 reduced Pdk4 mRNA, while increasing mRNA levels of Il6, Tnf α, and Il1 β. Phosphorylation of AKT was increased and protein abundance of acetyl CoA carboxylase (ACC) was decreased in skeletal muscle overexpressing TWIST1 or TWIST2. Glycogen synthesis and fatty acid oxidation remained stable in C2C12 cells overexpressing TWIST1 or TWIST2. Finally, skeletal muscle mRNA levels remain unaltered in ob/ob mice, type 2 diabetic patients, or in healthy subjects before and after 3 months of exercise training. Collectively, our results indicate that TWIST1 and TWIST2 are expressed in skeletal muscle. Overexpression of these proteins impacts proteins in metabolic pathways and mRNA level of cytokines. However, skeletal muscle levels of TWIST transcripts are unaltered in metabolic diseases.

Free access

Almas R Juma, Pauliina E Damdimopoulou, Sylvia V H Grommen, Wim J M Van de Ven and Bert De Groef

Pleomorphic adenoma gene 1 (PLAG1) belongs to the PLAG family of zinc finger transcription factors along with PLAG-like 1 and PLAG-like 2. The PLAG1 gene is best known as an oncogene associated with certain types of cancer, most notably pleomorphic adenomas of the salivary gland. While the mechanisms of PLAG1-induced tumorigenesis are reasonably well understood, the role of PLAG1 in normal physiology is less clear. It is known that PLAG1 is involved in cell proliferation by directly regulating a wide array of target genes, including a number of growth factors such as insulin-like growth factor 2. This is likely to be a central mode of action for PLAG1 both in embryonic development and in cancer. The phenotype of Plag1 knockout mice suggests an important role for PLAG1 also in postnatal growth and reproduction, as PLAG1 deficiency causes growth retardation and reduced fertility. A role for PLAG1 in growth and reproduction is further corroborated by genome-wide association studies in humans and domestic animals in which polymorphisms in the PLAG1 genomic region are associated with body growth and reproductive traits. Here we review the current evidence for PLAG1 as a regulator of growth and fertility and discuss possible endocrine mechanisms involved.

Free access

PS Leung, WP Chan, TP Wong and C Sernia

The possibility of an intrinsic renin-angiotensin system (RAS) in the pancreas has been raised by previous studies in which immunohistochemical examination showed the presence of angiotensin II and its receptor subtypes, type 1 (AT1) and type 2 (AT2). In the present study, gene expression of several key RAS components was investigated by reverse-transcription PCR. mRNA expression for angiotensinogen, renin and angiotensin II receptor subtypes, AT1a, AT1b and AT2 was shown. The presence of angiotensinogen protein, the mandatory component for an intrinsic RAS, was demonstrated by Western blotting and localized by immunohistochemistry to the epithelia and endothelia of pancreatic ducts and blood vessels respectively. Immunoblot analysis detected a predominant protein band of about 60 kDa in the pancreas. This was consistent with the predicted value for angiotensinogen as reported in other tissues. Together with previous findings, the present study shows that the rat pancreas expresses the major RAS component genes, notably angiotensinogen and renin, required for intracellular formation of angiotensin II. The data support the notion of an intrinsic RAS in the rat pancreas which may play a role in the regulation of pancreatic functions.

Restricted access


Globulin preparations (41) from patients with Graves's disease (positive to thyroid stimulating immunoglobulins; TSI) and 12 from healthy persons (TSI-negative) were tested for their specific thyrotrophin (TSH)-binding properties. Globulins from both groups possessed binding sites for 131I-labelled TSH. The mean dissociation constant (K d) was 6·8 pmol/l per mg globulin and the maximum specific binding (B max) was 3·0 pmol/mg globulin per 1 for the TSI-negative control group. Twenty-four (58·5%) globulin preparations from the TSI-positive group had similar TSH-binding characteristics with mean K d of 7·2 pmol/l per mg globulin and B max of 3·6 pmol/mg globulin per 1 (A-type binding) but the remaining 17 (41·5%) bound TSH in a different fashion with K d of 71·5 pmol/l per mg globulin and B max of 13·6 pmol/mg globulin per 1 (B-type binding).

Both types of specific TSH binding reached the maximal level within 1 h of incubation and had an optimum pH of 7–8. There was a linear correlation between the amount of bound TSH and the globulin content of the samples. Both types of binding were reversible by the addition of an excess of TSH and gonadotrophins, ACTH, prolactin and insulin competed with TSH for the binding sites only when in relatively high concentrations. The binding sites were associated with macromolecules; they emerged with the void volume after chromatography on Sephadex G-200 and migrated with immunoglobulin G (IgG) on paper electrophoresis. The binding capacity of the globulin preparations could be decreased by preincubation with antiserum to human IgG or with human thyroid membranes.

Free access

Cathy A Guo and Shaodong Guo

The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin–angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function.

Free access

Bohan Wang, I Stuart Wood and Paul Trayhurn

The effect of hypoxia on the expression and secretion of major adipokines by human preadipocytes has been examined. Hypoxia (1% O2) led to an increase in the HIF-1α transcription factor subunit in cultured preadipocytes, as did incubation with the hypoxia mimetic CoCl2. Leptin mRNA was essentially undetectable in preadipocytes incubated under normoxia (21% O2), but exposure to 1% O2, or CoCl2, for 4 or 24 h resulted in an induction of leptin gene expression (measured by real-time PCR). Immunoreactive leptin was not detected in the medium from normoxic preadipocytes, but was present in the medium from the hypoxic cells. Hypoxia stimulated expression of the GLUT-1 facilitative glucose transporter gene and the vascular endothelial growth factor (VEGF) gene in preadipocytes, as in adipocytes. PPARγ and aP2 mRNA levels, markers of adipocyte differentiation, were reduced by hypoxia in both cell types. In marked contrast to adipocytes, interleukin-6 (IL-6), angiopoietin-like protein 4, and plasminogen activator inhibitor-1 expression by preadipocytes was not stimulated by low O2 tension. Consistent with the gene expression results, VEGF release into the medium from preadipocytes was increased by hypoxia, but there was no change in IL-6 secretion. It is concluded that hypoxia induces human preadipocytes to synthesize and secrete leptin. Preadipocytes and adipocytes differ in their responsiveness to low O2 tension, maturation of the response to hypoxia developing on differentiation.