Search Results

You are looking at 1 - 10 of 1,396 items for

  • Abstract: Thyroid* x
  • Abstract: Digestion x
  • Abstract: Thyroxine x
  • Abstract: Thyroglobulin x
  • Abstract: Thyroiditis x
  • Abstract: Thyrotoxicosis x
  • Abstract: Hypothyroidism x
  • Abstract: Hyperthyroidism x
  • Abstract: TSHR x
Clear All Modify Search
Free access

Beate Karges, Gerd Krause, Janos Homoki, Klaus-Michael Debatin, Nicolas de Roux and Wolfram Karges

Mutations of the human thyrotrophin receptor (TSH-R) are a cause of thyroid adenomas and hyperthyroidism. Here we study mechanisms of receptor activation in a genomic TSH-R variant V509A located in transmembrane helix (TMH) 3, which we identify in a family with congenital hyperthyroidism, multiple adenomas and follicular thyroid cancer. Using molecular modelling and dynamic simulation, we predicted the release of amino acid residue A593 (located opposite in domain TMH5) from a tight ‘knob-and-hole’ interaction with TMH3, physiologically constrained in the native receptor state by the bulky side chain of V509. To experimentally validate this concept, we generated mutant TSH-R expression constructs for functional in vitro studies. TSH-R mutant V509A showed a 2.8-fold increase in basal cAMP production, confirming constitutive TSH-R activation. The addition of a second site suppressor mutant A593V to TSH-R V509A resulted in the normalization of basal cAMP release, and the dose-responsiveness to TSH ligand was maintained. These data thus demonstrate that TSH-R V509A activation is caused by the release of TMH3–TMH5 interhelical constraints, while the native TSH-R conformation is re-stabilized by the introduction of a spacious valine residue at position 593. In conclusion, we delineate a novel mechanism of constitutive TSH-R activation, leading to thyroid hyperfunction and neoplasia.

Open access

Shuang-Xia Zhao, Shanli Tsui, Anthony Cheung, Raymond S Douglas, Terry J Smith and J Paul Banga

The TSH receptor (TSHR) is the critical target for antibody production in Graves' disease (GD). Insulin-like growth factor 1 receptor (IGF1R) has been proposed as a second autoantigen in complications of GD such as orbitopathy. We attempted to induce orbital tissue remodeling in mice undergoing immunizations with plasmids encoding TSHR and IGF1R delivered by in vivo skeletal muscle electroporation, a procedure known to give a sustained, long-term antibody response. Female BALB/c mice were challenged with TSHR A-subunit or IGF1Rα subunit plasmid by injection and electroporation. Mice challenged with TSHR A-subunit plasmid resulted in high frequency (75%) of hyperthyroidism and thyroid-stimulating antibodies. But strikingly, immunization with TSHR A-subunit plasmid also elicited antibody to IGF1Rα subunit. Mice challenged in the same manner with IGF1Rα subunit plasmid produced strong antibody responses to IGF1R, but did not undergo any changes in phenotype. Simultaneous challenge by double antigen immunization with the two plasmids in distant anatomical sites reduced the incidence of hyperthyroidism, potentially as a consequence of antigenic competition. Thyroid glands from the TSHR A-subunit plasmid-challenged group were enlarged with patchy microscopic infiltrates. Histological analysis of the orbital tissues demonstrated moderate connective tissue fibrosis and deposition of Masson's trichrome staining material. Our findings imply that immunization with TSHR A-subunit plasmid leads to generation of IGF1R antibodies, which together with thyroid-stimulating antibodies may precipitate remodeling of orbital tissue, raising our understanding of its close association with GD.

Free access

Takao Ando, Rauf Latif and Terry F Davies

The post-translational processing of the TSH receptor (TSHR) includes intra-molecular cleavage with the loss of a 50 amino acid ectodomain region and the formation of two subunits (α and β), followed by likely α subunit shedding. TSHR antibodies (TSHR-Abs), which are directed at the ectodomain, may influence thyroid function by stimulating or inhibiting TSHR signaling or may bind without any such influence (the neutral group of antibodies). When we examined the characteristics of a series of monoclonal TSHR-Abs, we found that many were able to inhibit receptor cleavage and enhance TSHR expression. This was especially apparent with the neutral type of TSHR-Abs directed to the cleaved region of the ectodomain (aa 316–366). Indeed, such inhibition appeared to be epitope dependent with TSHR-Abs directed to regions after residues 335–354 showing no such activity. We propose that this aberrant process, whereby TSHR-Abs influence antigen processing, is a novel mechanism for the maintenance and exacerbation of autoimmune thyroid disease.

Free access

M Theodoropoulou, T Arzberger, Y Gruebler, Z Korali, P Mortini, W Joba, AE Heufelder, GK Stalla and L Schaaf

Thyrotrophin (TSH) synthesis and secretion is under the positive control of thyrotrophin releasing hormone and under the negative control of the thyroid hormones. However, it is hypothesised that TSH has a direct effect on the regulation of its own synthesis through an intrapituitary loop mediated by pituitary TSH receptors (TSH-R). The aim of this investigation was to study the expression of TSH-R in normal human pituitary at mRNA and protein levels, and to compare the pattern of protein expression between different pituitary adenomas. Using RT-PCR we were able to detect TSH-R mRNA in the normal pituitary, and immunohistochemical studies showed TSH-R protein expression in distinct areas of the anterior pituitary. Double immunostaining with antibodies against each of the intrapituitary hormones and S100 revealed that TSH-R protein is present in thyrotrophs and folliculostellate cells. Examination of 58 pituitary adenomas, including two clinically active and two clinically inactive thyrotroph adenomas, revealed TSH-R immunopositivity in only the two clinically inactive thyrotroph adenomas. This study shows, for the first time, the presence of TSH-R protein in the normal anterior pituitary and in a subset of thyrotroph adenomas. The expression of TSH-R in the thyrotroph and folliculostellate cell subpopulations provides preliminary evidence of a role for TSH in autocrine and paracrine regulatory pathways within the anterior pituitary gland.

Free access

S G Watson, A D Radford, A Kipar, P Ibarrola and L Blackwood

Hyperthyroidism is the most common endocrinopathy in cats, and is both clinically and histopathologically very similar to human toxic nodular goitre (TNG). Molecular studies on human TNG have revealed the presence of mis-sense mutations in the thyroid-stimulating hormone receptor (TSHR) gene, most frequently in exon 10. Our hypothesis was that similar mutations exist in hyperthyroid cats. Genomic DNA was extracted from 134 hyperplastic/ adenomatous nodules (from 50 hyperthyroid cats), and analysed for the presence of mutations in exon 10 of the TSHR gene. 11 different mutations were detected, one silent and 10 mis-sense, of which nine were somatic mutations. 28 of the 50 cats (67/134 nodules) had at least one mis-sense mutation. The mis-sense mutations were Met-452→Thr in 17 cats (35 nodules), Ser-504→Arg (two different mutational forms) in two cats (two nodules), Val-508→Arg in one cat (three nodules), Arg-530→Gln in one cat (two nodules), Val-557→Leu in 13 cats (36 nodules), Thr-631→Ala or Thr-631→Phe (each mutation seen in one nodule of one cat), Asp-632→Tyr in six cats (10 nodules) and Asp-632→His in one cat (one nodule). Five of these mutations have been associated previously with human hyperthyroidism. Of the 41 cats for which more than one nodule was available, 14 had nodules with different mutations. The identification of a potential genetic basis for feline hyperthyroidism is novel, increases our understanding of the pathogenesis of this significant feline disease, and confirms its similarity to TNG.

Free access

ST Chen, JD Lin and KH Lin

The expression of TSH receptor (TSHR) gene is frequently lost in thyroid cancers during the process of dedifferentiation that involves perturbation of several nuclear transcription factors. We have established that thyroid hormone receptor beta1 (TRbeta1) is associated with the loss of TSHR gene expression in an anaplastic human thyroid cancer cell line, ARO. To demonstrate that TRbeta1 regulates TSHR gene expression, we performed electrophoresis mobility shift and 3,5,3'-triiodothyronine (T3) transactivation assays. As expected, TRbeta1 bound the synthesized oligomer containing TSHR promoter sequence by heterodimerizing with retinoid X receptor. When a chimeric reporter pTRCAT5'-146 enclosing the minimal TSHR promoter was applied for T3 transactivation assay, two TRbeta1-overexpressing transfectants of ARO cells (ARO1 and ARO2) demonstrated higher basal activity than their parental cells. Consequentially, T3 suppressed the reporter gene activity only in ARO1 and ARO2, but not in ARO cells. A point mutation creating a cAMP response element (CRE) in the reporter pTRCAT5'-146 CRE led to T3-induced suppression of the reporter gene in ARO cells without changing the basal or T3-induced activities in ARO1 and ARO2 cells. We conclude that the regulatory effect of T3 on TSHR gene expression is TR- and promoter DNA sequence-determined.

Free access

C Voigt, HP Holzapfel, S Meyer and R Paschke

G-protein-coupled receptor kinases (GRKs) are implicated in the pathophysiology of human diseases such as arterial hypertension, heart failure and rheumatoid arthritis. While G-protein-coupled receptor kinases 2 and 5 have been shown to be involved in the desensitization of the rat thyrotropin receptor (TSHR), their role in the pathophysiology of hyperfunctioning thyroid nodules (HTNs) is unknown. Therefore, we analyzed the expression pattern of the known GRKs in human thyroid tissue and investigated their function in the pathology of HTNs. The expression of different GRKs in human thyroid and HTNs was measured by Western blotting. The influence of GRK expression on TSHR function was analyzed by coexpression experiments in HEK 293 cells. We demonstrate that in addition to GRKs 2, 5 and 6, GRKs 3 and 4 are also expressed in the human thyroid. GRKs 2, 3, 5 and 6 are able to desensitize the TSHR in vitro. This GRK-induced desensitization is amplified by the additional over-expression of beta-arrestin 1 or 2. We did not find any mutations in the GRKs 2, 3 and 5 from 14 HTNs without TSHR mutations and Gsalpha mutations. The expression of GRKs 3 and 4 was increased in HTNs independently from the existence of TSHR mutations or Gsalpha mutations. In conclusion, the increased expression of GRK 3 in HTNs and the ability of GRK 3 to desensitize the TSHR in vitro, suggest a potential role for GRK 3 as a negative feedback regulator for the constitutively activated cAMP pathway in HTNs.

Free access

Feng Ye, Bingyin Shi, Xiaoyan Wu, Peng Hou, Lei Gao, Xiaodan Ma, Li Xu and Liping Wu

CD40 plays an important role in the pathogenesis of Graves' disease (GD). Inhibition of CD40 expression may be a promising treatment for GD. In this study, we used an animal model to investigate whether lentivirus expressing siRNA for CD40 (LV-CD40-siRNA) could be useful for the therapy of GD. BALB/c mice were injected with PBS alone (PBS group), negative lentivirus (control siRNA group), or LV-CD40-siRNA (CD40 siRNA group), 3 days before being treated with adenovirus expressing human TSHR A subunit (Ad-TSHR289) three times at 3-week intervals to induce GD model. Sera thyroxine (T4) levels were assayed by RIA. The expression of CD40 was detected at the mRNA level by real-time PCR and protein level by flow cytometry. The expression of CD40, CD80, and CD86 was significantly decreased in the CD40 siRNA group (P<0.05), while FOXP3 expression was increased compared to the control siRNA group (P=0.05). Mean T4 levels were decreased 14% in the CD40 siRNA group compared to the control siRNA group. The rate of disease induction was similar among the three groups injected with Ad-TSHR289. LV-CD40-siRNA is a useful tool to inhibit the expression of CD40 in vivo, but it cannot decrease the incidence of hyperthyroidism in a limited period of time.

Free access

Y Wang, L P Wu, J Fu, H J Lv, X Y Guan, L Xu, P Chen, C Q Gao, P Hou, M J Ji and B Y Shi

Graves' disease (GD) is a common organ-specific autoimmune disease with the prevalence between 0.5 and 2% in women. Several lines of evidence indicate that the shed A-subunit rather than the full-length thyrotropin receptor (TSHR) is the autoantigen that triggers autoimmunity and leads to hyperthyroidism. We have for the first time induced GD in female rhesus monkeys, which exhibit greater similarity to patients with GD than previous rodent models. After final immunization, the monkeys injected with adenovirus expressing the A-subunit of TSHR (A-sub-Ad) showed some characteristics of GD. When compared with controls, all the test monkeys had significantly higher TSHR antibody levels, half of them had increased total thyroxine (T4) and free T4, and 50% developed goiter. To better understand the underlying mechanisms, quantitative studies on subpopulations of CD4+T helper cells were carried out. The data indicated that this GD model involved a mixed Th1 and Th2 response. Declined Treg proportions and increased Th17:Treg ratio are also observed. Our rhesus monkey model successfully mimicked GD in humans in many aspects. It would be a useful tool for furthering our understanding of the pathogenesis of GD and would potentially shorten the distance toward the prevention and treatment of this disease in human.

Free access

Ikuko Ueki, Norio Abiru, Kentaro Kawagoe and Yuji Nagayama

Experimental Graves'-like hyperthyroidism can be induced in susceptible mouse strains by repetitive immunizations with recombinant adenovirus expressing the human full-length TSH receptor (TSHR) or its A-subunit. Previous studies have shown that splenocytes from immunized mice produce interferon (IFN)-γ and interleukin (IL) 10 in response to antigen stimulation in an in vitro T cell recall assay. Although IFN-γ is now well known to be essential for disease induction, the role(s) played by IL10 are unknown. Therefore, this study was conducted to clarify the significance of endogenous IL10 in the pathogenesis of experimental Graves' disease using IL10 deficient (IL10−/−) mice. Our results show that T cell response was augmented when estimated by their antigen-specific secretion of the key cytokine IFN-γ, but B cell function was dampened, that is, anti-TSHR antibody titers were decreased in IL10−/− mice, resulting in a lower incidence of Graves' hyperthyroidism (54% in IL10+/+ vs 25% in IL10−/−). Thus, in addition to IFN-γ, these data clarified the role of IL10 for optimizing anti-TSHR antibody induction and eliciting Graves' hyperthyroidism in our Graves' mouse model.