Search Results

You are looking at 21 - 30 of 3,650 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
Clear All Modify Search
Free access

Paige V Bauer and Frank A Duca

The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.

Free access

Tianru Jin

The proglucagon gene (gcg) encodes a number of peptide hormones that are of cell-type specifically expressed in the pancreatic islets, the distal ileum and the large intestine, as well as certain brain neuronal cells. These hormones are important in controlling blood glucose homeostasis, intestinal cell proliferation, and satiety. More importantly, the major hormone generated in the pancreas (i.e. glucagon) exerts opposite effects to the ones that are produced in the intestines (i.e. glucagon-like peptide-1 (GLP-1) and GLP-2). To understand the mechanisms underlying cell-type-specific gcg expression may lead to the identification of novel drug targets to control endogenous hormone production for therapeutic purposes. Extensive in vitro examinations have shown that more than a half dozen of homeodomain (HD) proteins are able to interact with the gcg gene promoter and activate its expression. In vivo ‘knock-out’ mouse studies, however, cannot demonstrate the role of some of them (i.e. Cdx-2, Brn-4, and Nkx6.2) in the development of pancreatic islet α-cells, suggesting that these HD proteins may exert some redundant functions in the genesis of gcg-producing cells. Investigations have also revealed that gcg expression is controlled by both protein kinase A and Epac signaling pathways in response to cAMP elevation, and cell-type specifically controlled by insulin and the effectors of the Wnt signaling pathway. This review summarizes our current understanding on the mechanisms underlying gcg transcription and presented my interpretations on how the interactions between different signaling networks regulate gcg expression.

Free access

Rhonda D Prisby, Joshua M Swift, Susan A Bloomfield, Harry A Hogan and Michael D Delp

Osteopenia and an enhanced risk of fracture often accompany type 1 diabetes. However, the association between type 2 diabetes and bone mass has been ambiguous with reports of enhanced, reduced, or similar bone mineral densities (BMDs) when compared with healthy individuals. Recently, studies have also associated type 2 diabetes with increased fracture risk even in the presence of higher BMDs. To determine the temporal relationship between type 2 diabetes and bone remodeling structural and mechanical properties at various bone sites were analyzed during pre-diabetes (7 weeks), short-term (13 weeks), and long-term (20 weeks) type 2 diabetes. BMDs and bone strength were measured in the femora and tibiae of Zucker diabetic fatty rats, a model of human type 2 diabetes. Increased BMDs (9–10%) were observed in the distal femora, proximal tibiae, and tibial mid- shafts in the pre-diabetic condition that corresponded with higher plasma insulin levels. During short- and long-term type 2 diabetes, various parameters of bone strength and BMDs were lower (9–26%) in the femoral neck, distal femora, proximal tibiae, and femoral and tibial mid-shafts. Correspondingly, blood glucose levels increased by 125% and 153% during short- and long-term diabetes respectively. These data indicate that alterations in BMDs and bone mechanical properties are closely associated with the onset of hyperinsulinemia and hyperglycemia, which may have direct adverse effects on skeletal tissue. Consequently, disparities in the human literature regarding the effects of type 2 diabetes on skeletal properties may be associated with the bone sites studied and the severity or duration of the disease in the patient population studied.

Restricted access

P. F. Terranova, J. Th. J. Uilenbroek, L. Saville, D. Horst and Y. Nakamura

ABSTRACT

Preovulatory follicles from adult hamsters on the morning of pro-oestrus were used in this study. Serotonin stimulated oestradiol production by preovulatory follicles during a 5-h incubation in 1 ml Krebs–Ringer bicarbonate glucose medium containing isobutylmethylxanthine (0.1 mmol/l; IBMX) and androstenedione (1 μmol/l). The enhanced oestradiol production by serotonin was dependent on the dose of IBMX and androstenedione. Mianserin, a serotonin type-1 and serotonin type-2 receptor antagonists, prevented the serotonin-enhanced oestradiol production in a dose-dependent manner. Ketanserin, a specific serotonin type-2 receptor antagonist, was ineffective in blocking the action of serotonin, indicating that the effect of serotonin was mediated by the serotonin type-1 receptor. In the presence of androstenedione (1 μmol/l), serotonin was unable to enhance oestradiol production in isolated granulosa cells. It was also unable to enhance oestradiol production in early atretic follicles; atresia was induced experimentally by an injection of phenobarbital in order to prevent ovulation.

The data indicate that serotonin stimulates oestradiol production by hamster preovulatory follicles in vitro. The mechanism of action of serotonin involves an intact healthy follicle, a serotonin type-1 receptor and possibly cyclic AMP. The increased oestradiol secretion might be related to increased androgen production by the follicle and increased permeability (leakiness) of the follicle to androstenedione which serves as substrate for aromatization to oestradiol by the granulosa cell.

Journal of Endocrinology (1990) 125, 433–438

Free access

Sachiko Kitanaka, Utako Sato and Takashi Igarashi

Mutations in hepatocyte nuclear factor-1β (HNF-1β) lead to type 5 maturity-onset diabetes of the young (MODY5). Moreover, mutations in the HNF-1β gene might cause multiorgan abnormalities including renal diseases, genital malformations, and abnormal liver function. The objective of this study was to investigate the molecular mechanism of diabetes mellitus, intrauterine growth retardation, and cholestasis observed in MODY5 patients. We analyzed the transactivity of wild-type and three mutant HNF-1β on native human insulin, IGF-I, and multidrug resistance protein 2 (MRP2) promoters in combination with HNF-1α, using a reporter-assay system in transiently transfected mammalian cells. In the human insulin gene promoter, we found that the cooperation of HNF-1α and HNF-1β is prominent. Absence of this cooperation was observed in all of the HNF-1β mutants. In the human IGF-I and MRP2 promoters, we found that the HNF-1β His153Asn (H153N) mutant had a mutant-specific repressive effect on both HNF-1α and wild-type HNF-1β transactivity. Absence of the cooperation of HNF-1β mutants with HNF-1α in the human insulin gene promoter might be one cause of defective insulin secretion. The H153N mutant-specific repression of HNF-1α and HNF-1β transactivity in human IGF-I and MRP2 promoters might explain the case-specific clinical features of growth retardation and cholestasis observed only in early infancy. We found differential property of HNF-1α/HNF-1β activity and the effect of HNF-1β mutants by the promoters. We consider that analyses of HNF-1β mutants on the intended human native promoters in combination with HNF-1α may be useful in investigating the molecular mechanisms of the various features in MODY5.

Free access

Benjamin J Lamont and Sofianos Andrikopoulos

Incretin-based therapies appear to offer many advantages over other approaches for treating type 2 diabetes. Some preclinical studies have suggested that chronic activation of glucagon-like peptide 1 receptor (GLP1R) signalling in the pancreas may result in the proliferation of islet β-cells and an increase in β-cell mass. This provided hope that enhancing GLP1 action could potentially alter the natural progression of type 2 diabetes. However, to date, there has been no evidence from clinical trials suggesting that GLP1R agonists or dipeptidyl peptidase-4 (DPP4) inhibitors can increase β-cell mass. Nevertheless, while the proliferative capacity of these agents remains controversial, some studies have raised concerns that they could potentially contribute to the development of pancreatitis and hence increase the risk of pancreatic cancer. Currently, there are very limited clinical data to directly assess these potential benefits and risks of incretin-based therapies. However, a review of the preclinical studies indicates that incretin-based therapies probably have only a limited capacity to regenerate pancreatic β-cells, but may be useful for preserving any remaining β-cells in type 2 diabetes. In addition, the majority of preclinical evidence does not support the notion that GLP1R agonists or DPP4 inhibitors cause pancreatitis.

Free access

K Fosgerau, P Galle, T Hansen, A Albrechtsen, C de Lemos Rieper, B Klarlund Pedersen, L Kongskov Larsen, A Randrup Thomsen, O Pedersen, M Bagge Hansen and A Steensberg

Abstract

Interleukin-6 (IL6) is critically involved in inflammation and metabolism. About 1% of people produce IL6 autoantibodies (aAb-IL6) that impair IL6 signaling in vivo. We tested the hypothesis that the prevalence of such aAb-IL6 is increased in type 2 diabetic patients and that aAb-IL6 plays a direct role in causing hyperglycemia. In humans, the prevalence of circulating high-affinity neutralizing aAb-IL6 was 2.5% in the type 2 diabetic patients and 1% in the controls (odds ratio 2.5, 95% confidence interval 1.2–4.9, P=0.01). To test for the role of aAb-IL6 in causing hyperglycemia, such aAb-IL6 were induced in mice by a validated vaccination procedure. Mice with plasma levels of aAb-IL6 similar to the 2.5% type 2 diabetic patients developed obesity and impaired glucose tolerance (area under the curve (AUC) glucose, 2056±62 vs 1793±62, P=0.05) as compared with sham-vaccinated mice, when challenged with a high-fat diet. Mice with very high plasma levels of aAb-IL6 developed elevated fasting plasma glucose (mM, 4.8±0.4 vs 3.3±0.1, P<0.001) and impaired glucose tolerance (AUC glucose, 1340±38 vs 916±25, P<0.001) as compared with sham-control mice on normal chow. In conclusion, the prevalence of plasma aAb-IL6 at levels known to impair IL6 signaling in vivo is increased 2.5-fold in people with type 2 diabetes. In mice, matching levels of aAb-IL6 cause obesity and hyperglycemia. These data suggest that a small subset of type 2 diabetes may in part evolve from an autoimmune attack against IL6.

Free access

Helena A Walz, Linda Härndahl, Nils Wierup, Emilia Zmuda-Trzebiatowska, Fredrik Svennelid, Vincent C Manganiello, Thorkil Ploug, Frank Sundler, Eva Degerman, Bo Ahrén and Lena Stenson Holst

Inadequate islet adaptation to insulin resistance leads to glucose intolerance and type 2 diabetes. Here we investigate whether β-cell cAMP is crucial for islet adaptation and prevention of glucose intolerance in mice. Mice with a β-cell-specific, 2-fold overexpression of the cAMP-degrading enzyme phosphodiesterase 3B (RIP-PDE3B/2 mice) were metabolically challenged with a high-fat diet. We found that RIP-PDE3B/2 mice early and rapidly develop glucose intolerance and insulin resistance, as compared with wild-type littermates, after 2 months of high-fat feeding. This was evident from advanced fasting hyperinsulinemia and early development of hyper-glycemia, in spite of hyperinsulinemia, as well as impaired capacity of insulin to suppress plasma glucose in an insulin tolerance test. In vitro analyses of insulin-stimulated lipogenesis in adipocytes and glucose uptake in skeletal muscle did not reveal reduced insulin sensitivity in these tissues. Significant steatosis was noted in livers from high-fat-fed wild-type and RIP-PDE3B/2 mice and liver triacyl-glycerol content was 3-fold higher than in wild-type mice fed a control diet. Histochemical analysis revealed severe islet perturbations, such as centrally located α-cells and reduced immunostaining for insulin and GLUT2 in islets from RIP-PDE3B/2 mice. Additionally, in vitro experiments revealed that the insulin secretory response to glucagon-like peptide-1 stimulation was markedly reduced in islets from high-fat-fed RIP-PDE3B/2 mice. We conclude that accurate regulation of β-cell cAMP is necessary for adequate islet adaptation to a perturbed metabolic environment and protective for the development of glucose intolerance and insulin resistance.

Restricted access

D. R. NAIK and C. J. DOMINIC

Seven morphologically and tinctorially distinct types of cell (types 1–) have been distinguished in the pars anterior of the pituitary gland of the musk shrew (Suncus murinus L.). On the basis of their responses to various experimental stimuli, these cell types were correlated with the secretion of various trophic hormones. Type 1 cells exhibited conspicuous changes after thyroidectomy or inactivation of the thyroid gland and hence appeared to be the source of TSH. Types 2 and 3 cells responded to gonadectomy and administration of androgens, which suggests that they were associated with gonadotrophin secretion. The granules of the type 2, but not the type 3 cells could be extracted with 10% trichloroacetic acid, which may indicate that type 2 and 3 cells secrete FSH and LH respectively. After the administration of either reserpine or oestrogen, the type 4 cells underwent hypertrophy and hyperplasia, which suggests that they were the likely source of prolactin. Type 6 cells, which are distinguishable from type 4 cells by their thinly dispersed erythrosinophilic granulation, showed conspicuous changes after unilateral adrenalectomy, administration of metyrapone or exposure to stress and may therefore be responsible for secretion of ACTH. Type 5 cells tinctorially resembled the somatotrophic cells of other mammalian species and did not respond to any of the experimental treatments used in the present study. It is therefore possible that these cells have a somatotrophic function. The possible significance of type 7 cells has been discussed previously.

Restricted access

C. L. FOSTER, E. CAMERON and B. A. YOUNG

SUMMARY

The ultrastructure of the adenohypophysis of the rabbit, after treatment with propylthiouracil, is described. All cells in the zona tuberalis and pars distalis proper, with the exception of the prolactin producing (type 1) and stellate cells (type 5), were affected. However, the only ones which presented some evidence of sequential changes were the type 4 cells. These became markedly degranulated and sometimes showed vesiculation of the cisternae of the granular endoplasmic reticulum, similar to that observed in the 'thyroidectomy' cells in some other species. Although changes occurred in the somatotrophs (type 2) and in the gonadotrophs (type 3) the evidence suggests that it is the type 4 cells which have a thyrotrophic function.