Search Results

You are looking at 81 - 90 of 3,478 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 2 x
Clear All Modify Search
Free access

D Chambery, B de Galle and S Babajko

Insulin-like growth factors (IGF-I and IGF-II) stimulate proliferation and differentiation in many cell types. In biological fluids, they associate non-covalently with high-affinity binding proteins (IGFBPs) which control their bioavailability and modulate their action. We previously demonstrated that IGFBP-2, -4 and -6 are intimately involved in the growth of cells derived from human neuroblastomas. Here, we have investigated the effects of retinoic acid (RA), which induces differentiation in these cells, on the expression of IGFBPs secreted by SK-N-SH neuroblastoma cells. Analysis of transcriptional activity of the IGFBP-2, -4 and -6 genes in isolated nuclei (run-on experiments) showed that RA increased the transcriptional activity of the IGFBP-6 gene, reduced that of the IGFBP-4 gene and had no effect on that of the IGFBP-2 gene. Northern blot analysis following treatment with actinomycin D showed that RA increased the stability of IGFBP-6 mRNA by a factor of 2.6, decreased that of IGFBP-2 mRNA by a factor of 2.3 and failed to affect IGFBP-4 mRNA. Treatment of cells with cycloheximide indicated the involvement of labile proteins in the stabilization of these mRNAs the expression of which could be under the control of RA. The transcriptional and/or post-transcriptional mechanisms by which RA regulates each of the IGFBPs produced by SK-N-SH cells are therefore different. Such regulation may also reflect the state of differentiation of the neuroblastoma cells. With RA-induced differentiation, IGFBP-6 is strongly stimulated, whereas IGFBP-2 and IGFBP-4 are severely depressed, which would suggest that each IGFBP plays a specific role. Moreover, this regulation seems tissue-specific because it is different in other cell types.

Restricted access

P. F. Terranova, J. Th. J. Uilenbroek, L. Saville, D. Horst and Y. Nakamura


Preovulatory follicles from adult hamsters on the morning of pro-oestrus were used in this study. Serotonin stimulated oestradiol production by preovulatory follicles during a 5-h incubation in 1 ml Krebs–Ringer bicarbonate glucose medium containing isobutylmethylxanthine (0.1 mmol/l; IBMX) and androstenedione (1 μmol/l). The enhanced oestradiol production by serotonin was dependent on the dose of IBMX and androstenedione. Mianserin, a serotonin type-1 and serotonin type-2 receptor antagonists, prevented the serotonin-enhanced oestradiol production in a dose-dependent manner. Ketanserin, a specific serotonin type-2 receptor antagonist, was ineffective in blocking the action of serotonin, indicating that the effect of serotonin was mediated by the serotonin type-1 receptor. In the presence of androstenedione (1 μmol/l), serotonin was unable to enhance oestradiol production in isolated granulosa cells. It was also unable to enhance oestradiol production in early atretic follicles; atresia was induced experimentally by an injection of phenobarbital in order to prevent ovulation.

The data indicate that serotonin stimulates oestradiol production by hamster preovulatory follicles in vitro. The mechanism of action of serotonin involves an intact healthy follicle, a serotonin type-1 receptor and possibly cyclic AMP. The increased oestradiol secretion might be related to increased androgen production by the follicle and increased permeability (leakiness) of the follicle to androstenedione which serves as substrate for aromatization to oestradiol by the granulosa cell.

Journal of Endocrinology (1990) 125, 433–438

Free access

Te Du, Liu Yang, Xu Xu, Xiaofan Shi, Xin Xu, Jian Lu, Jianlu Lv, Xi Huang, Jing Chen, Heyao Wang, Jiming Ye, Lihong Hu and Xu Shen

Vincamine, a monoterpenoid indole alkaloid extracted from the Madagascar periwinkle, is clinically used for the treatment of cardio-cerebrovascular diseases, while also treated as a dietary supplement with nootropic function. Given the neuronal protection of vincamine and the potency of β-cell amelioration in treating type 2 diabetes mellitus (T2DM), we investigated the potential of vincamine in protecting β-cells and ameliorating glucose homeostasis in vitro and in vivo. Interestingly, we found that vincamine could protect INS-832/13 cells function by regulating G-protein-coupled receptor 40 (GPR40)/cAMP/Ca2+/IRS2/PI3K/Akt signaling pathway, while increasing glucose-stimulated insulin secretion (GSIS) by modulating GPR40/cAMP/Ca2+/CaMKII pathway, which reveals a novel mechanism underlying GPR40-mediated cell protection and GSIS in INS-832/13 cells. Moreover, administration of vincamine effectively ameliorated glucose homeostasis in either HFD/STZ or db/db type 2 diabetic mice. To our knowledge, our current work might be the first report on vincamine targeting GPR40 and its potential in the treatment of T2DM.

Free access

Tao Xie, Min Chen and Lee S Weinstein

The ubiquitously expressed G protein α-subunit Gsα mediates the intracellular cAMP response to glucagon-like peptide 1 (GLP1) and other incretin hormones in pancreatic islet cells. We have shown previously that mice with β-cell-specific Gsα deficiency (βGsKO) develop severe early-onset insulin-deficient diabetes with a severe defect in β-cell proliferation. We have now generated mice with Gsα deficiency throughout the whole pancreas by mating Gsα-floxed mice with Pdx1-cre transgenic mice (PGsKO). PGsKO mice also developed severe insulin-deficient diabetes at a young age, confirming the important role of Gsα signaling in β-cell growth and function. Unlike in βGsKO mice, islets in PGsKO mice had a relatively greater proportion of α-cells, which were spread throughout the interior of the islet. Similar findings were observed in mice with pancreatic islet cell-specific Gsα deficiency using a neurogenin 3 promoter-cre recombinase transgenic mouse line. Studies in the α-cell line αTC1 confirmed that reduced cAMP signaling increased cell proliferation while increasing cAMP produced the opposite effect. Therefore, it appears that Gsα/cAMP signaling has opposite effects on pancreatic α- and β-cell proliferation, and that impaired GLP1 action in α- and β-cells via Gsα signaling may be an important contributor to the reciprocal effects on insulin and glucagon observed in type 2 diabetics. In addition, PGsKO mice show morphological changes in exocrine pancreas and evidence for malnutrition and dehydration, indicating an important role for Gsα in the exocrine pancreas as well.

Free access

V Csernus, AV Schally and K Groot

Antagonistic analogs of GHRH inhibit growth of various human cancers both in vivo and in vitro. To elucidate the mechanism of direct action of the antagonistic analogs of GHRH on tumor cells, cultured human cancer cells were exposed to GHRH, vasoactive intestinal peptide (VIP), secretin, glucagon, neuropeptide-Y (NPY), pituitary adenylate cyclase-activating peptide (PACAP), and VIP analogs in a superfusion system, and changes in cAMP and IGF-II release from the cells were measured. Various human cancer cell lines, such as mammary (MDAMB-468 and ZR-75-1), prostatic (PC-3), pancreatic (SW-1990 and Capan-2), ovarian (OV-1063), and colorectal (LoVo) responded to pulsatile stimuli with GHRH (0.5-20 nM), VIP (0.02-10 nM), and PACAP-38 (0.05-5 nM) with a rapid, transient increase in cAMP release from the cells. The VIP antagonist, PG-97-269, and the adenylate cyclase inhibitor, MDL-12330A, but not SQ-22536 or pertussis toxin, blocked the cAMP responses to these peptides. Stimulation of the cells with 100 nM secretin, glucagon or NPY did not alter the cAMP release. Our results suggest that GHRH receptors different from the type expressed in the pituitary are involved in mediating these effects. As cAMP is a potent second messenger controlling a wide variety of intracellular functions, including those required for cell growth, our results indicate that GHRH might have a direct stimulatory effect on growth of human cancers. Blockade of the autocrine/paracrine action of GHRH with its antagonistic analogs may provide a new approach to tumor control.

Free access

Marcelo A Christoffolete, Márton Doleschall, Péter Egri, Zsolt Liposits, Ann Marie Zavacki, Antonio C Bianco and Balázs Gereben

Thyroid hormone receptor (TR) and liver X-receptor (LXR) are the master regulators of lipid metabolism. Remarkably, a mouse with a targeted deletion of both LXRα and LXRβ is resistant to western diet-induced obesity, and exhibits ectopic liver expression of the thyroid hormone activating type 2 deiodinase (D2). We hypothesized that LXR/retinoid X-receptor (RXR) signaling inhibits hepatic D2 expression, and studied this using a luciferase reporter containing the human DIO2 (hDIO2) promoter in HepG2 cells. Given that, in contrast to mammals, the chicken liver normally expresses D2, the chicken DIO2 (cDIO2) promoter was also studied. 22(R)-OH-cholesterol negatively regulated hDIO2 in a dose-dependent manner (100 μM, approximately twofold), while it failed to affect the cDIO2 promoter. Truncations in the hDIO2 promoter identified the region −901 to −584 bp as critical for negative regulation. We also investigated if 9-cis retinoic acid (9-cis RA), the ligand for the heterodimeric partner of TR and LXR, RXR, could regulate the hDIO2 promoter. Notably, 9-cis RA repressed the hDIO2 luciferase reporter (1 μM, approximately fourfold) in a dose-dependent manner, while coexpression of an inactive mutant RXR abolished this effect. However, it is unlikely that RXR homodimers mediate the repression of hDIO2 since mutagenesis of a DR-1 at −506 bp did not interfere with 9-cis RA-mediated repression. Our data indicate that hDIO2 transcription is negatively regulated by both 22(R)-OH-cholesterol and 9-cis RA, which is consistent with LXR/RXR involvement. In vivo, the inhibition of D2-mediated tri-iodothyronine (T3) production by cholesterol/9-cis RA could function as a feedback loop, given that T3 decreases hepatic cholesterol levels.

Free access

Sachiko Kitanaka, Utako Sato and Takashi Igarashi

Mutations in hepatocyte nuclear factor-1β (HNF-1β) lead to type 5 maturity-onset diabetes of the young (MODY5). Moreover, mutations in the HNF-1β gene might cause multiorgan abnormalities including renal diseases, genital malformations, and abnormal liver function. The objective of this study was to investigate the molecular mechanism of diabetes mellitus, intrauterine growth retardation, and cholestasis observed in MODY5 patients. We analyzed the transactivity of wild-type and three mutant HNF-1β on native human insulin, IGF-I, and multidrug resistance protein 2 (MRP2) promoters in combination with HNF-1α, using a reporter-assay system in transiently transfected mammalian cells. In the human insulin gene promoter, we found that the cooperation of HNF-1α and HNF-1β is prominent. Absence of this cooperation was observed in all of the HNF-1β mutants. In the human IGF-I and MRP2 promoters, we found that the HNF-1β His153Asn (H153N) mutant had a mutant-specific repressive effect on both HNF-1α and wild-type HNF-1β transactivity. Absence of the cooperation of HNF-1β mutants with HNF-1α in the human insulin gene promoter might be one cause of defective insulin secretion. The H153N mutant-specific repression of HNF-1α and HNF-1β transactivity in human IGF-I and MRP2 promoters might explain the case-specific clinical features of growth retardation and cholestasis observed only in early infancy. We found differential property of HNF-1α/HNF-1β activity and the effect of HNF-1β mutants by the promoters. We consider that analyses of HNF-1β mutants on the intended human native promoters in combination with HNF-1α may be useful in investigating the molecular mechanisms of the various features in MODY5.

Free access

E N Fazio, M Everest, R Colman, R Wang and C L Pin

Mist1 is an exocrine-specific transcription factor that is necessary for the establishment of cell organization and function of pancreatic acinar cells. While Mist1 is not expressed in the endocrine pancreas, the disorganized phenotype of the exocrine component may affect endocrine function. Therefore, we examined endocrine tissue morphology and function in Mist1-knockout (Mist1 KO) mice. Endocrine function was evaluated using a glucose-tolerance test on 2–10-month-old female mice and revealed a significant reduction in glucose-clearing ability in 10-month-old Mist1KO mice compared with wild-type mice. Immunohistochemical analysis of islet hormone expression indicated that the decreased endocrine function was not due to a decrease in insulin-, glucagon- or somatostatin-expressing cells. However, a decrease in the size of islets in 10-month-old Mist1KO mice was observed along with a decrease in Glut-2 protein accumulation. These results suggest that the islets in Mist1KO mice are functionally compromised, likely accounting for the decreased glucose tolerance. Based on these findings, we have identified that the loss of a regulatory gene in the exocrine compartment can affect the endocrine component, providing a possible link between susceptibility for various pancreatic diseases.

Free access

TY Tai, JY Lu, CL Chen, MY Lai, PJ Chen, JH Kao, CZ Lee, HS Lee, LM Chuang and YM Jeng

This study aimed at elucidating the effects of interferon (IFN)-alpha on glucose metabolism in patients with chronic hepatitis B and C infections. Twenty-eight biopsy-proven patients with chronic hepatitis B (ten cases) and hepatitis C (18 cases) were given IFN-alpha for a total of 24 weeks. The patients received a 75 g oral glucose tolerance test (OGTT), glucagon stimulation test, tests for type 1 diabetes-related autoantibodies and an insulin suppression test before and after IFN-alpha therapy. Ten of the 28 patients responded to IFN-alpha therapy. Steady-state plasma glucose of the insulin suppression test decreased significantly in responders (13.32+/-1.48 (S.E.M.) vs 11.33+/-1.19 mmol/l, P=0.0501) but not in non-responders (12.29+/-1.24 vs 11.11+/-0.99 mmol/l, P=0.2110) immediately after completion of IFN-alpha treatment. In the oral glucose tolerance test, no significant difference was observed in plasma glucose in either responders (10.17+/-0.23 vs 10.03+/-0.22 mmol/l) or non-responders (10.11+/-0.22 vs 9.97+/-0.21 mmol/l) 3 Months after completion of IFN-alpha treatment. However, significant differences were noted in C-peptide in both responders (2.90+/-0.13 vs 2.20+/-0.09 nmol/l, P=0.0040) and non-responders (2.45+/-0.11 vs 2.22+/-0.08 nmol/l, P=0.0287) before vs after treatment. The changes of C-peptide in an OGTT between responders and non-responders were also significantly different (P=0.0028), with responders reporting a greater reduction in C-peptide. No case developed autoantibodies during the treatment. In patients who were successfully treated with IFN-alpha, insulin sensitivity improved and their plasma glucose stayed at the same level without secreting as much insulin from islet beta-cells.

Free access

DR Brigstock

The CCN family comprises cysteine-rich 61 (CYR61/CCN1), connective tIssue growth factor (CTGF/CCN2), nephroblastoma overexpressed (NOV/CCN3), and Wnt-induced secreted proteins-1 (WISP-1/CCN4), -2 (WISP-2/CCN5) and -3 (WISP-3/CCN6). These proteins stimulate mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Many of these activities probably occur through the ability of CCN proteins to bind and activate cell surface integrins. Accumulating evidence supports a role for these factors in endocrine pathways and endocrine-related processes. To illustrate the broad role played by the CCN family in basic and clinical endocrinology, this Article highlights the relationship between CCN proteins and hormone action, skeletal growth, placental angiogenesis, IGF-binding proteins and diabetes-induced fibrosis.