Search Results

You are looking at 11 - 20 of 3,399 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
Clear All Modify Search
Free access

Yoko Yagishita, Akira Uruno, Dionysios V Chartoumpekis, Thomas W Kensler and Masayuki Yamamoto

The transcription factor Nrf2 (NF-E2-related factor 2) plays a critical role in oxidative stress responses. Although activation of Nrf2 signaling is known to exert anti-inflammatory effects, the function of Nrf2 in inflammation-mediated autoimmune disorders, such as type 1 diabetes, is not well established. To address the roles of Nrf2 in protection against autoreactive T-cell-induced type 1 diabetes, we used non-obese diabetic (NOD) mice, which are a polygenic model of human type 1 diabetes, to generate a genetic model for assessment of the contribution of Nrf2 activation to prevention and/or treatment of type 1 diabetes. Because Keap1 (Kelch-like ECH-associated protein 1) negatively regulates Nrf2, we used Keap1 gene knockdown driven by either hypomorphic or knockout Keap1 alleles, which enhanced Nrf2 signaling to moderate or excess levels, respectively. Nrf2 activation in the NOD::Keap1 FA/ mice inhibited T-cell infiltration within or near the islets, ameliorated impairment of insulin secretion and prevented the development of diabetes mellitus. Notably, Nrf2 activation decreased both the plasma interferon-γ (IFN-γ) levels and the IFN-γ-positive cell numbers in the pancreatic islets. The amelioration of diabetes was also observed in the NOD mice with two hypomorphic Keap1 alleles (Keap1 FA/FA) by intermediate activation of Nrf2. Both NOD::Keap1 FA/ and NOD::Keap1 FA/FA mice had a decreased incidence of diabetes mellitus, demonstrating that activation of Nrf2 signaling prevented the onset of type 1 diabetes mellitus in NOD mice. Thus, Nrf2 appears to be a potential target for the prevention and treatment of type 1 diabetes.

Free access

Paige V Bauer and Frank A Duca

The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.

Restricted access

B. Lahlou, B. Fossat, J. Porthé-Nibelle, L. Bianchini and M. Guibbolini


Cyclic AMP levels were measured in freshly isolated hepatocytes of the rainbow trout. Compared with basal values, the average levels were increased up to 60 times in a dose-dependent manner either by mammalian glucagon (concentration range 1 nmol– 1 μmol/l; dose giving half maximum response (EC50) 0· 18 μmol/l) or by forskolin (concentration range 0·1–100 μmol/l; EC50 about 10 μmol/l). These stimulatory effects were partially inhibited by fish or mammalian neurohypophysial hormones used at relatively high concentrations (1–5 μmol/l). It is suggested that these results are evidence for the presence of V1-type receptors in fish hepatocytes. Together with previous results obtained with gills on the hormonal inhibition of adenylate cyclase activity, they suggest that teleost fish may possess only V1-type receptors (or two V1-related types), while the V2 receptors have evolved (or have become functional) in higher vertebrates.

J. Endocr. (1988) 119, 439–445

Free access

Raylene A Reimer

Glucagon-like peptide-1 (GLP-1) is a potent insulin secretagogue released from L-cells in the intestine. Meat hydrolysate (MH) is a powerful activator of GLP-1 secretion in the human enteroendocrine NCI-H716 cell line, but the mechanisms involved in nutrient-stimulated GLP-1 secretion are poorly understood. The objective of this study was to characterize the intracellular signalling pathways regulating MH- and amino acid-induced GLP-1 secretion. Individually, the pharmacological inhibitors, SB203580 (inhibitor of p38 mitogen-activated protein kinase (MAPK)), wortmannin (inhibitor of phosphatidyl inositol 3-kinase) and U0126 (inhibitor of mitogen activated or extracellular signal-regulated protein kinase (MEK1/2) upstream of extracellular signal-regulated kinase (ERK)1/2) all inhibited MH-induced GLP-1 secretion. Further examination of the MAPK pathway showed that MH increased the phosphorylation of ERK1/2, but not p38 or c-Jun N-terminal kinase over 2–15 min. Incubation with SB203580 resulted in a decrease in phosphorylated p38 MAPK and a concomitant increase in the phosphorylation of ERK1/2. Phosphorylation of ERK1/2 was augmented by co-incubation of MH with SB203580. Inhibitors of protein kinase A and protein kinase C did not inhibit MH-induced GLP-1 secretion. In contrast to non-essential amino acids, essential amino acids (EAAs) increased GLP-1 secretion and similar to MH, activated ERK1/2. However, they also activated p38-suggesting type of protein may affect GLP-1 secretion. In conclusion, there appears to be a crosstalk between p38 and ERK1/2 MAPK in the human enteroendocrine cell with the activation of ERK1/2 common to both MH and EAA. Understanding the cellular pathways involved in nutrient-stimulated GLP-1 secretion has important implications for the design of new treatments aimed at increasing endogenous GLP-1 release in type-2 diabetes and obesity.

Free access

BD Green, MH Mooney, VA Gault, N Irwin, CJ Bailey, P Harriott, B Greer, FP O'Harte and PR Flatt

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC(50) values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC(50) 0.37 nM). Similarly, both analogues stimulated cAMP production with EC(50) values of 16.3 and 27 nM respectively compared with GLP-1 (EC(50) 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P<0.05 to P<0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes.

Free access

EG Siegel, A Seidenstucker, B Gallwitz, F Schmitz, A Reinecke-Luthge, G Kloppel, UR Folsch and WE Schmidt

Liver cirrhosis is often accompanied by a disturbed carbohydrate metabolism similar to type 2 diabetes. To investigate the severity of the defect in insulin secretion in this form of diabetes, we measured insulin release from isolated pancreatic islets of rats with CCl(4)-phenobarbital-induced liver cirrhosis. Cirrhosis was confirmed by clinical signs, elevated liver enzymes and histology. Fasting venous plasma glucose concentrations were equal in rats with liver cirrhosis and in controls. Plasma insulin and glucagon concentrations were significantly greater (P<0.01) in cirrhotic rats than in control animals. Glucose (16.7 mM)-induced stimulation of insulin release from pancreatic islets revealed a twofold increase in control and cirrhotic rats. Basal and stimulated insulin secretion, however, were significantly lower in cirrhotic animals. The incretin hormone, glucagon-like peptide-1 (GLP-1), has therapeutic potential for the treatment of type 2 diabetes. Therefore, islets from control and cirrhotic animals were incubated with GLP-1 in concentrations from 10(-)(11) to 10(-)(6) M. GLP-1 stimulated insulin release in a concentration-dependent manner. In islets from cirrhotic rats, basal and stimulated insulin secretion was blunted compared with controls. These data show that the hyperinsulinemia observed in liver cirrhosis is not due to an increase of insulin secretion from islets, but could be explained by decreased hepatic clearance of insulin. GLP-1 may ameliorate diabetes in patients with liver cirrhosis.

Free access

Joshua A Kulas, Kendra L Puig and Colin K Combs

The amyloid precursor protein (APP) has been extensively investigated for its role in the production of amyloid beta (Aβ), a plaque-forming peptide in Alzheimer’s disease (AD). Epidemiological evidence suggests type 2 diabetes is a risk factor for AD. The pancreas is an essential regulator of blood glucose levels through the secretion of the hormones insulin and glucagon. Pancreatic dysfunction is a well-characterized consequence of type 1 and type 2 diabetes. In this study, we have examined the expression and processing of pancreatic APP to test the hypothesis that APP may play a role in pancreatic function and the pathophysiology of diabetes. Our data demonstrate the presence of APP within the pancreas, including pancreatic islets in both mouse and human samples. Additionally, we report that the APP/PS1 mouse model of AD overexpresses APP within pancreatic islets, although this did not result in detectable levels of Aβ. We compared whole pancreas and islet culture lysates by Western blot from C57BL/6 (WT), APP−/− and APP/PS1 mice and observed APP-dependent differences in the total protein levels of GLUT4, IDE and BACE2. Immunohistochemistry for BACE2 detected high levels in pancreatic α cells. Additionally, both mouse and human islets processed APP to release sAPP into cell culture media. Moreover, sAPP stimulated insulin but not glucagon secretion from islet cultures. We conclude that APP and its metabolites are capable of influencing the basic physiology of the pancreas, possibly through the release of sAPP acting in an autocrine or paracrine manner.

Free access

Benjamin J Lamont and Sofianos Andrikopoulos

Incretin-based therapies appear to offer many advantages over other approaches for treating type 2 diabetes. Some preclinical studies have suggested that chronic activation of glucagon-like peptide 1 receptor (GLP1R) signalling in the pancreas may result in the proliferation of islet β-cells and an increase in β-cell mass. This provided hope that enhancing GLP1 action could potentially alter the natural progression of type 2 diabetes. However, to date, there has been no evidence from clinical trials suggesting that GLP1R agonists or dipeptidyl peptidase-4 (DPP4) inhibitors can increase β-cell mass. Nevertheless, while the proliferative capacity of these agents remains controversial, some studies have raised concerns that they could potentially contribute to the development of pancreatitis and hence increase the risk of pancreatic cancer. Currently, there are very limited clinical data to directly assess these potential benefits and risks of incretin-based therapies. However, a review of the preclinical studies indicates that incretin-based therapies probably have only a limited capacity to regenerate pancreatic β-cells, but may be useful for preserving any remaining β-cells in type 2 diabetes. In addition, the majority of preclinical evidence does not support the notion that GLP1R agonists or DPP4 inhibitors cause pancreatitis.

Restricted access

Kanta Kon, Hiroshi Tsuneki, Hisakatsu Ito, Yoshinori Takemura, Kiyofumi Sato, Mitsuaki Yamazaki, Yoko Ishii, Masakiyo Sasahara, Assaf Rudich, Takahiro Maeda, Tsutomu Wada and Toshiyasu Sasaoka

Disrupted sleep is associated with increased risk of type 2 diabetes. Central actions of orexin, mediated by orexin-1 and orexin-2 receptors, play a crucial role in the maintenance of wakefulness; accordingly, excessive activation of the orexin system causes insomnia. Resting-phase administration of dual orexin receptor antagonist (DORA) has been shown to improve sleep abnormalities and glucose intolerance in type 2 diabetic db/db mice, although the mechanism remains unknown. In the present study, to investigate the presence of functional link between sleep and glucose metabolism, the influences of orexin antagonists with or without sleep-promoting effects were compared on glucose metabolism in diabetic mice. In db/db mice, 2-SORA-MK1064 (an orexin-2 receptor antagonist) and DORA-12 (a DORA) acutely improved non-rapid eye movement sleep, whereas 1-SORA-1 (an orexin-1 receptor antagonist) had no effect. Chronic resting-phase administration of these drugs improved glucose intolerance, without affecting body weight, food intake, locomotor activity and energy expenditure calculated from O2 consumption and CO2 production. The expression levels of proinflammatory factors in the liver were reduced by 2-SORA-MK1064 and DORA-12, but not 1-SORA-1, whereas those in the white adipose tissue were reduced by 1-SORA-1 and DORA-12 more efficiently than 2-SORA-MK1064. When administered chronically at awake phase, these drugs caused no effect. In streptozotocin-induced type 1-like diabetic mice, neither abnormality in sleep–wake behavior nor improvement of glucose intolerance by these drugs were observed. These results suggest that both 1-SORA-type (sleep-independent) and 2-SORA-type (possibly sleep-dependent) mechanisms can provide chronotherapeutic effects against type 2 diabetes associated with sleep disturbances in db/db mice.

Free access

L van Bloemendaal, J S ten Kulve, S E la Fleur, R G Ijzerman and M Diamant

The delivery of nutrients to the gastrointestinal tract after food ingestion activates the secretion of several gut-derived mediators, including the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 receptor agonists (GLP-1RA), such as exenatide and liraglutide, are currently employed successfully in the treatment of patients with type 2 diabetes mellitus. GLP-1RA improve glycaemic control and stimulate satiety, leading to reductions in food intake and body weight. Besides gastric distension and peripheral vagal nerve activation, GLP-1RA induce satiety by influencing brain regions involved in the regulation of feeding, and several routes of action have been proposed. This review summarises the evidence for a physiological role of GLP-1 in the central regulation of feeding behaviour and the different routes of action involved. Also, we provide an overview of presently available data on pharmacological stimulation of GLP-1 pathways leading to alterations in CNS activity, reductions in food intake and weight loss.