Search Results

You are looking at 91 - 100 of 3,644 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
Clear All Modify Search
Free access

R Wang, N Yashpal, F Bacchus and J Li

Hepatocyte growth factor (HGF) has been suggested to be a potent regulator of β-cell function and proliferation. The purpose of this study was to investigate whether HGF could regulate the proliferation and differentiation of islet-derived epithelial monolayers into insulin-producing cells. We have generated islet-derived epithelial monolayers that are enriched with cells expressing c-Kit, a tyrosine kinase receptor and putative marker, from isolated postnatal rat islets. Monolayers were cultured on type I collagen gel and treated in defined differentiation medium with or without HGF (50 ng/ml) for 7 days. Subsequently, the expression of transcription factors and pancreatic endocrine cell markers as well as c-Kit expression were compared between the HGF (HGF+), no HGF treatment (HGF) and monolayers without differentiation medium (control) groups, using immunocytochemical and RT-PCR approaches. We observed that the number of c-Kit-, glucose transport type 2 (Glut2)- and the transcription factor pancreatic duodenal homeobox-1 (PDX-1)-expressing cells were significantly increased in the HGF+ group. The expression of insulin at the mRNA and protein level was also increased in this treatment group with a 1.7-fold increase in basal insulin release and a 2.3-fold increase in insulin content in comparison with the HGF group. A high proliferative capacity was also found in the HGF+ group. Co-localization of insulin and PDX-1 or Glut2 was revealed frequently in cells treated with HGF+ with occasional co-staining of c-Kit and insulin observed. This study showed that HGF can activate the proliferation and differentiation of islet-derived epithelial monolayer into insulin-producing cells. However, no formation of islet-like clusters was observed. Taken together, this study implies that HGF mediates differentiation of immature cell types into insulin-expressing cells; however, HGF supplementation alone is insuffcient in restoring full β-cell function.

Free access

Ghania Ramdani, Nadine Schall, Hema Kalyanaraman, Nisreen Wahwah, Sahar Moheize, Jenna J Lee, Robert L Sah, Alexander Pfeifer, Darren E Casteel and Renate B Pilz

NO/cGMP signaling is important for bone remodeling in response to mechanical and hormonal stimuli, but the downstream mediator(s) regulating skeletal homeostasis are incompletely defined. We generated transgenic mice expressing a partly-activated, mutant cGMP-dependent protein kinase type 2 (PKG2R242Q) under control of the osteoblast-specific Col1a1 promoter to characterize the role of PKG2 in post-natal bone formation. Primary osteoblasts from these mice showed a two- to three-fold increase in basal and total PKG2 activity; they proliferated faster and were resistant to apoptosis compared to cells from WT mice. Male Col1a1-Prkg2 R242Q transgenic mice had increased osteoblast numbers, bone formation rates and Wnt/β-catenin-related gene expression in bone and a higher trabecular bone mass compared to their WT littermates. Streptozotocin-induced type 1 diabetes suppressed bone formation and caused rapid bone loss in WT mice, but male transgenic mice were protected from these effects. Surprisingly, we found no significant difference in bone micro-architecture or Wnt/β-catenin-related gene expression between female WT and transgenic mice; female mice of both genotypes showed higher systemic and osteoblastic NO/cGMP generation compared to their male counterparts, and a higher level of endogenous PKG2 activity may be responsible for masking effects of the PKG2R242Q transgene in females. Our data support sexual dimorphism in Wnt/β-catenin signaling and PKG2 regulation of this crucial pathway in bone homeostasis. This work establishes PKG2 as a key regulator of osteoblast proliferation and post-natal bone formation.

Free access

EG Siegel, A Seidenstucker, B Gallwitz, F Schmitz, A Reinecke-Luthge, G Kloppel, UR Folsch and WE Schmidt

Liver cirrhosis is often accompanied by a disturbed carbohydrate metabolism similar to type 2 diabetes. To investigate the severity of the defect in insulin secretion in this form of diabetes, we measured insulin release from isolated pancreatic islets of rats with CCl(4)-phenobarbital-induced liver cirrhosis. Cirrhosis was confirmed by clinical signs, elevated liver enzymes and histology. Fasting venous plasma glucose concentrations were equal in rats with liver cirrhosis and in controls. Plasma insulin and glucagon concentrations were significantly greater (P<0.01) in cirrhotic rats than in control animals. Glucose (16.7 mM)-induced stimulation of insulin release from pancreatic islets revealed a twofold increase in control and cirrhotic rats. Basal and stimulated insulin secretion, however, were significantly lower in cirrhotic animals. The incretin hormone, glucagon-like peptide-1 (GLP-1), has therapeutic potential for the treatment of type 2 diabetes. Therefore, islets from control and cirrhotic animals were incubated with GLP-1 in concentrations from 10(-)(11) to 10(-)(6) M. GLP-1 stimulated insulin release in a concentration-dependent manner. In islets from cirrhotic rats, basal and stimulated insulin secretion was blunted compared with controls. These data show that the hyperinsulinemia observed in liver cirrhosis is not due to an increase of insulin secretion from islets, but could be explained by decreased hepatic clearance of insulin. GLP-1 may ameliorate diabetes in patients with liver cirrhosis.

Free access

Qingling Huang, Elena Timofeeva and Denis Richard

The present study was conducted to investigate the long-term effects of subchronic elevation of central leptin levels on the expression of corticotropin-releasing factor (CRF) and its types 1 and 2 receptors in the brain of rats subjected to treadmill running-induced stress. PBS or recombinant murine leptin was infused continuously for a period of 5 days into the third ventricle of rats with the aid of osmotic minipumps at a delivery rate of 2 μg/day. On the fifth day of infusion, rats were killed under resting conditions or after a session of treadmill running, which is known to induce a stress response in rats. Leptin treatment significantly decreased food intake, body weight, white adipose tissue weight, glucose and insulin plasma contents, and blunted the treadmill running-induced elevation in plasma levels of corticosterone. Leptin infusion prevented stress-induced de novo synthesis of CRF in the paraventricular hypothalamic nucleus (PVN), which was measured using the intronic probe for CRF heteronuclear RNA. The induction of the type 1 CRF receptor (CRF1R) in the PVN and supraoptic nucleus in running rats was also significantly blunted by leptin. In contrast, leptin treatment strongly increased the expression of type 2 CRF receptor (CRF2R) in the ventromedial hypothalamic nucleus (VMH). The present results suggest that subchronic elevation of central levels of leptin blunts treadmill running-induced activation of the hypothalamic–pituitary–adrenal axis through the inhibition of activation of the CRFergic PVN neurons, and potentially enhances the anorectic CRF effects via the stimulation of expression of CRF2R in the VMH.

Free access

P Scherzer, I Nachliel, H Bar-On, MM Popovtzer and E Ziv

Psammomys obesus, a desert rodent, develops diabetes when displaced from its natural environment and fed a high energy diet in the laboratory. This study was designed to examine variations in renal function in relation to the diabetic state with emphasis on changes in Na-K-ATPase activity. The following groups of Psammomys were studied: (1) Animals fed a saltbush diet; a low energy/high salt diet (natural). (2) Animals fed a low energy/low salt diet (laboratory). Both 1 and 2 were normoglycemic and normoinsulinemic and thus served as control. (3) Animals fed a high energy diet (group C) who were hyperglycemic and hyperinsulinemic; this group was divided into two subgroups: C1 presented with glomerular hyperfiltration rate and C2 with glomerular hypofiltration rate. (4) Animals fed a high energy diet presenting with hyperglycemia-hypoinsulinemia (group D). (5) Group D+I, similar to group D but treated with external insulin (2 U/24 h). Groups D and C1, whose glomerular filtration rose above normal by 30% and 70% respectively, exhibited metabolic similarity to Type I and Type II diabetes. In these groups, Na-K-ATPase activity in the cortex increased by 80-100% and in the medulla by 180% (P<0.001 vs control). In group C2 with reduced glomerular filtration rate (GFR), Na-K-ATPase activity did not differ from control. In group D+I, with normalized glomerular filtration rate, Na-K-ATPase activity was similar to control. There was a linear and significant correlation between GFR and Na-K-ATPase activity both in the cortex and in the medulla. These experiments present a well defined animal model of diabetes mellitus. Variations in glucose and in insulin did not correlate with Na-K-ATPase activity. These results clearly demonstrated that Na-K-ATPase activity in the diabetic Psammomys was determined by glomerular filtration but was independent of plasma glucose or insulin levels.

Free access

Noriko Tagawa, Ryosuke Yuda, Sayaka Kubota, Midori Wakabayashi, Yuko Yamaguchi, Daisuke Kiyonaga, Natsuko Mori, Erika Minamitani, Hiroaki Masuzaki and Yoshiharu Kobayashi

17β-Estradiol (E2) serves as an anti-obesity steroid; however, the mechanism underlying this effect has not been fully clarified. The effect of E2 on adipocytes opposes that of glucocorticoids, which potentiate adipogenesis and anabolic lipid metabolism. The key to the intracellular activation of glucocorticoid in adipocytes is 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyses the production of active glucocorticoids (cortisol in humans and corticosterone in rodents) from inactive 11-keto steroids (cortisone in humans and 11-dehydrocorticosterone in rodents). Using differentiated 3T3-L1 adipocytes, we showed that E2 inhibited 11β-HSD1 activity. Estrogen receptor (ER) antagonists, ICI-182 780 and tamoxifen, failed to reverse this inhibition. A significant inhibitory effect of E2 on 11β-HSD1 activity was observed within 5–10 min. Furthermore, acetylation or α-epimerization of 17-hydroxy group of E2 attenuated the inhibitory effect on 11β-HSD1. These results indicate that the inhibition of 11β-HSD1 by E2 depends on neither an ER-dependent route, transcriptional pathway nor non-specific fashion. Hexose-6-phosphate dehydrogenase, which provides the cofactor NADPH for full activation of 11β-HSD1, was unaffected by E2. A kinetic study revealed that E2 acted as a non-competitive inhibitor of 11β-HSD1. The inhibitory effect of E2 on 11β-HSD1 was reproduced in adipocytes isolated from rat mesenteric fat depots. This is the first demonstration that E2 inhibits 11β-HSD1, thereby providing a novel insight into the anti-obesity mechanism of estrogen.

Free access

Cathy A Guo and Shaodong Guo

The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin–angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function.

Free access

Matthew E Picha, Marc J Turano, Christian K Tipsmark and Russell J Borski

Compensatory growth (CG) is a period of growth acceleration that exceeds normal rates after animals are alleviated of certain growth-stunting conditions. In hybrid striped bass (HSB, Morone chrysops×Morone saxatilis), 3 weeks of complete feed restriction results in a catabolic state that, when relieved, renders a subsequent phase of CG. The catabolic state was characterized by depressed levels of hepatic Type I and II GH receptor (ghr1, ghr2) and igf1 mRNA, along with considerable decreases in plasma Igf1. The state of catabolism also resulted in significant declines in hepatic igf2 mRNA and in circulating 40 kDa Igf-binding protein (Igfbp). Skeletal muscle expression of ghr2 mRNA was significantly increased. Upon realimentation, specific growth rates (SGRs) were significantly higher than sized-matched controls, indicating a period of CG. Hepatic ghr1, ghr2, igf1 and igf2 mRNA levels along with plasma Igf1 and 40 kDa Igfbp increased rapidly during realimentation. Plasma Igf1 and total hepatic igf2 mRNA were significantly correlated to SGR throughout the study. Skeletal muscle igf1 mRNA also increased tenfold during CG. These data suggest that endocrine and paracrine/autocrine components of the GH–Igf axis, namely igf1, igf2, and ghr1 and ghr2, may be involved in CG responses in HSB, with several of the gene expression variables exceeding normal levels during CG. We also demonstrate that normalization of hepatic mRNA as a function of total liver production, rather than as a fraction of total RNA, may be a more biologically appropriate method of quantifying hepatic gene expression when using real-time PCR.

Free access

Z H Liu, K Tsuchida, T Matsuzaki, Y L Bao, A Kurisaki and H Sugino

Activin type II receptors (ActRIIs) including ActRIIA and ActRIIB are serine/threonine kinase receptors that form complexes with type I receptors to transmit intracellular signaling of activins, nodal, myostatin and a subset of bone morphogenetic proteins. ActRIIs are unique among serine/threonine kinase receptors in that they associate with proteins having PSD-95, Discs large and ZO-1 (PDZ) domains. In our previous studies, we reported specific interactions of ActRIIs with two independent PDZ proteins named activin receptor-interacting proteins 1 and 2 (ARIP1 and ARIP2). Overexpression of both ARIP1 and ARIP2 reduce activin-induced transcription. Here, we report the isolation of two isoforms of ARIP2 named ARIP2b and 2c. ARIP2, ARIP2b and ARIP2c recognize COOH-terminal residues of ActRIIA that match a PDZ-binding consensus motif. ARIP2 and its isoforms have one PDZ domain in the NH2-terminal region, and interact with ActRIIA. Although PDZ domains containing GLGF motifs of ARIP2b and 2c are identical to that of ARIP2, their COOH-terminal sequences differ from that of ARIP2. Interestingly, unlike ARIP2, overexpression of ARIP2b or 2c did not affect ActRIIA internalization. ARIP2b/2c inhibit inhibitory actions of ARIP2 on activin signaling. ARIP2 is widely distributed in mouse tissues. ARIP2b/2c is expressed in more restricted tissues such as heart, brain, kidneys and liver. Our results indicate that although both ARIP2 and ARIP2b/2c interact with activin receptors, they regulate ActRIIA function in a different manner.

Restricted access

S. J. Winder, S. D. Wheatley and I. A. Forsyth


Sucrose density centrifugation was used to prepare a partially purified membrane fraction from the mammary glands of non-pregnant, pregnant and lactating sheep. The binding of125 I-labelled insulin-like growth factor-I (IGF-I) was dependent on membrane protein concentration, pH, time and temperature. The binding showed the characteristics of a type-1 IGF receptor, being displaced by IGF-I (median effective dose (ED50) 0·55 nmol/l), less effectively by IGF-II (ED50 8·8 nmol/l) and least effectively by insulin. Glucagon, ovine prolactin and ovine placental lactogen could not displace binding. A molecular weight of 135 000 was determined by affinity cross-linking using disuccinimidyl suberate; this was consistent with the reported size of the type-1 receptor α-subunit. Scatchard analysis was used to determine binding affinity and numbers of IGF-I-binding sites. A single class of high-affinity binding sites was found in all physiological states. In non-pregnant sheep and sheep at days 40, 75 and 110–120 of pregnancy and at term, the binding affinity was similar (apparent dissociation constant (K d) 2·73 ±0·31 nmol/l, n = 22). In lactating sheep (weeks 1, 4 and 10), the binding affinity was significantly (P = 0·02) higher (K d 0·77± 0·06 nmol/l n = 9). Binding capacity was similar in non-pregnant and pregnant sheep (1005 ± 113 fmol/mg, n = 19), but fell by parturition and remained low in lactation (570±52 fmol/mg membrane protein, n = 12). The results suggest that the mammary growth of pregnancy is not regulated at the level of the type-1 IGF receptor.

Journal of Endocrinology (1993) 136, 297–304