Search Results

You are looking at 81 - 90 of 3,644 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
Clear All Modify Search
Free access

Hong Liu, Jian Guo, Lin Wang, Ning Chen, Andrew Karaplis, David Goltzman and Dengshun Miao

To assess the roles of 1,25-dihydroxyvitamin D (1,25(OH)2D) and parathyroid hormone (PTH) in hard tissue formation in oro-facial tissues, we examined the effect of either 1,25(OH)2D or PTH deficiency on dentin and dental alveolar bone formation and mineralization in the mandibles, and osteoblastic bone formation in long bones of 1α-hydroxylase knockout (1α(OH)ase−/−) mice. Compared with wild-type mice, the mineral density was decreased in the teeth and mandibles, and unmineralized dentin (predentin and biglycan immunopositive dentin) and unmineralized bone matrix in the dental alveolar bone were increased in 1α(OH)ase−/− mice. The dental volume, reparative dentin volume, and dentin sialoprotein immunopositive areas were reduced in 1α(OH)ase−/− mice. The cortical thickness, dental alveolar bone volume, and osteoblast number were all decreased significantly in the mandibles; in contrast, the osteoblast number and surface were increased in the trabecular bone of the tibiae in 1α(OH)ase−/− mice consistent with their secondary hyperparathyroidism. The expression of PTH receptor and IGF1 was reduced slightly in mandibles, but enhanced significantly in the long bones in the 1α(OH)ase−/− mice. To control for the role of secondary hyperparathyroidism, we also examined teeth and mandibles in 6-week-old PTH−/− mice. In these animals, dental and bone volumes in mandibles were not altered when compared with their wild-type littermates. These results suggest that 1,25(OH)2D3 plays an anabolic role in both dentin and dental alveolar bone as it does in long bones, whereas PTH acts predominantly in long bones rather than mandibular bone.

Free access

L van Bloemendaal, J S ten Kulve, S E la Fleur, R G Ijzerman and M Diamant

The delivery of nutrients to the gastrointestinal tract after food ingestion activates the secretion of several gut-derived mediators, including the incretin hormone glucagon-like peptide 1 (GLP-1). GLP-1 receptor agonists (GLP-1RA), such as exenatide and liraglutide, are currently employed successfully in the treatment of patients with type 2 diabetes mellitus. GLP-1RA improve glycaemic control and stimulate satiety, leading to reductions in food intake and body weight. Besides gastric distension and peripheral vagal nerve activation, GLP-1RA induce satiety by influencing brain regions involved in the regulation of feeding, and several routes of action have been proposed. This review summarises the evidence for a physiological role of GLP-1 in the central regulation of feeding behaviour and the different routes of action involved. Also, we provide an overview of presently available data on pharmacological stimulation of GLP-1 pathways leading to alterations in CNS activity, reductions in food intake and weight loss.

Free access

N M Whalley, L E Pritchard, D M Smith and A White

Proglucagon is cleaved to glucagon by prohormone convertase 2 (PC2) in pancreatic α-cells, but is cleaved to glucagon-like peptide-1 (GLP-1) by PC1 in intestinal L-cells. The aim of this study was to identify mechanisms which switch processing of proglucagon to generate GLP-1 in the pancreas, given that GLP-1 can increase insulin secretion and β-cell mass. The α-cell line, αTC1-6, expressed PC1 at low levels and GLP-1 was detected in cells and in culture media. GLP-1 was also found in isolated human islets and in rat islets cultured for 7 days. High glucose concentrations increased Pc1 gene expression and PC1 protein in rat islets. High glucose (25 mM) also increased GLP-1 but decreased glucagon secretion from αTC1-6 cells suggesting a switch in processing to favour GLP-1. Three G protein-coupled receptors, GPR120, TGR5 and GPR119, implicated in the release of GLP-1 from L-cells are expressed in αTC1-6 cells. Incubation of these cells with an agonist of TGR5 increased PC1 promoter activity and GLP-1 secretion suggesting that this is a mechanism for switching processing to GLP-1 in the pancreas. Treatment of isolated rat islets with streptozotocin caused β-cell toxicity as evidenced by decreased glucose-stimulated insulin secretion. This increased GLP-1 but not glucagon in the islets. In summary, proglucagon can be processed to GLP-1 in pancreatic cells. This process is upregulated by elevated glucose, activation of TGR5 and β-cell destruction. Understanding this phenomenon may lead to advances in therapies to protect β-cell mass, and thereby slow progression from insulin resistance to type 2 diabetes.

Free access

Andreas Börjesson and Carina Carlsson

In order to elucidate a possible relationship between β-cell function and conversion of proinsulin to insulin, isolated rat pancreatic islets were maintained in tissue culture for 1 week at various glucose concentrations (5.6–56 mM). Studies were also conducted on islets cultured for 48 h with interleukin-1β (IL-1β). By pulse-chase labelling and immunoprecipitation, the relative contents of newly synthesized proinsulin and insulin were determined. ELISA was used to analyse insulin and proinsulin content in medium and within islets. Using real-time PCR, the mRNA levels of proinsulin converting enzymes (PC1 and PC2) were studied. Islets cultured at 56 mM glucose had an increased proportion of newly synthesized proinsulin when compared with islets cultured at 5.6 mM glucose after a 90-min chase periods, however, no difference was observed after culture at 11 and 28 mM glucose. ELISA measurements revealed that culture at increased glucose concentrations as well as islet exposure to IL-1β increased proinsulin accumulation in the culture media. The mRNA expression of PC1 was increased after culture at 11 and 28 mM glucose. Treatment for 48 h with IL-1β increased the proportion of proinsulin both at 45 and 90 min when compared with control islets. These islets also displayed a decreased mRNA level of PC1 as well as PC2. Calculations of the half-time for proinsulin demonstrated a significant prolongation after treatment with IL-1β. We conclude that a sustained functional stimulation by glucose of islets is coupled to a decreased conversion of proinsulin which is also true for islets treated with IL-1β. This may contribute to the elevated levels of proinsulin found both at the onset of type 1 diabetes as well as in type 2 diabetes.

Restricted access

P. J. Miettinen, T. Otonkoski and R. Voutilainen

ABSTRACT

To understand the development of the human pancreas better, we studied the expression and regulation of insulin, insulin-like growth factor-II (IGF-II) and transforming growth factor-α (TGF-α) genes in the human fetal pancreas and islet-like cell clusters (ICC) from the second trimester human fetuses. Northern blot analysis revealed an abundant expression of IGF-II, insulin and TGF-α mRNAs in the intact pancreas and the cultured ICCs. Furthermore, transcripts for insulin receptor, type-1 and -2 IGF receptors, and GH receptor could be amplified by polymerase chain reaction analysis from the pancreas and the ICCs. With in-situ hybridization, IGF-II mRNA was found in abundance in both the exocrine and endocrine pancreas, exceeding the amount of insulin mRNA. In ICCs, insulin mRNA-containing cells were present as small clusters in the periphery and in the centre of the clusters corresponding to the immunolocation of insulin. The ICCs also contained many epidermal growth factor-, insulin- and type-1 IGF receptor- and TGF-α-positive cells.

When the ICCs were cultured in the presence of various secretagogues, only dibutyryl cyclic AMP was found to up-regulate insulin mRNA (39%; P < 0·05). IGF-II mRNA was also under cyclic AMP-dependent regulation (threefold increase; P = 0·025). Furthermore, blocking the type-1 IGF receptor with a monoclonal receptor antibody drastically reduced insulin expression (87%; P = 0·005) and additionally down-regulated IGF-II mRNA (49%; P = 0·005). IGF-1, IGF-II, TGF-α or epidermal growth factor-receptor antibody had no significant effect on either insulin or IGF-II mRNA. Exogenous TGF-α inhibited the release of insulin by the ICCs. It was concluded that IGF-II and TGF-α may be involved in the regulation of islet growth and differentiation.

Journal of Endocrinology (1993) 138, 127–136

Free access

Wenpeng Dong, Ye Jia, Xiuxia Liu, Huan Zhang, Tie Li, Wenlin Huang, Xudong Chen, Fuchun Wang, Weixia Sun and Hao Wu

Oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN). Nuclear factor erythroid 2-related factor 2 (NRF2) plays a key role in cellular defense against oxidative stress. NRF2 activators have shown promising preventive effects on DN. Sodium butyrate (NaB) is a known activator of NRF2. However, it is unknown whether NRF2 is required for NaB protection against DN. Therefore, streptozotocin-induced diabetic C57BL/6 Nrf2 knockout and their wild-type mice were treated in the presence or absence of NaB for 20 weeks. Diabetic mice, but not NaB-treated diabetic mice, developed significant renal oxidative damage, inflammation, apoptosis, fibrosis, pathological changes and albuminuria. NaB inhibited histone deacetylase (HDAC) activity and elevated the expression of Nrf2 and its downstream targets heme oxygenase 1 and NAD(P)H dehydrogenase quinone 1. Notably, deletion of the Nrf2 gene completely abolished NaB activation of NRF2 signaling and protection against diabetes-induced renal injury. Interestingly, the expression of Kelch-like ECH-associated protein 1, the negative regulator of NRF2, was not altered by NaB under both diabetic and non-diabetic conditions. Moreover, NRF2 nuclear translocation was not promoted by NaB. Therefore, the present study indicates, for the first time, that NRF2 plays a key role in NaB protection against DN. Other findings suggest that NaB may activate Nrf2 at the transcriptional level, possibly by the inhibition of HDAC activity.

Free access

Sanhua Leng, Wenshuo Zhang, Yanbin Zheng, Ziva Liberman, Christopher J Rhodes, Hagit Eldar-Finkelman and Xiao Jian Sun

High glucose (HG) has been shown to induce insulin resistance in both type 1 and type 2 diabetes. However, the molecular mechanism behind this phenomenon is unknown. Insulin receptor substrate (IRS) proteins are the key signaling molecules that mediate insulin's intracellular actions. Genetic and biological studies have shown that reductions in IRS1 and/or IRS2 protein levels are associated with insulin resistance. In this study we have shown that proteasome degradation of IRS1, but not of IRS2, is involved in HG-induced insulin resistance in Chinese hamster ovary (CHO) cells as well as in primary hepatocytes. To further investigate the molecular mechanism by which HG induces insulin resistance, we examined various molecular candidates with respect to their involvement in the reduction in IRS1 protein levels. In contrast to the insulin-induced degradation of IRS1, HG-induced degradation of IRS1 did not require IR signaling or phosphatidylinositol 3-kinase/Akt activity. We have identified glycogen synthase kinase 3β (GSK3β or GSK3B as listed in the MGI Database) as a kinase required for HG-induced serine332 phosphorylation, ubiquitination, and degradation of IRS1. Overexpression of IRS1 with mutation of serine332 to alanine partially prevents HG-induced IRS1 degradation. Furthermore, overexpression of constitutively active GSK3β was sufficient to induce IRS1 degradation. Our data reveal the molecular mechanism of HG-induced insulin resistance, and support the notion that activation of GSK3β contributes to the induction of insulin resistance via phosphorylation of IRS1, triggering the ubiquitination and degradation of IRS1.

Restricted access

A Amrani, M Jafarian-Tehrani, P Mormède, S Durant, J-M Pleau, F Haour, M Dardenne and F Homo-Delarche

Abstract

Cytokines, particularly interleukin 1 (IL-1) and tumor necrosis factor, are known to induce hypoglycemia in normal rodents or different experimental models of type II diabetes. We investigated, at the pre-diabetic stage, the effect of short-term administration of murine recombinant interleukin-1α (mrIL-1α) on the levels of glucose, insulin and corticosterone in the non-obese diabetic (NOD) mouse, a spontaneous model of type I diabetes. Two-month-old, pre-diabetic NOD mice of both sexes were insensitive to mrIL-1α (12·5 and 50 μg/kg) 2 h after administration, the time at which the maximal decrease (around 50%) was observed in the C57BL/6 mouse strain. Kinetic studies however showed that mrIL-1α lowered glycemia in both sexes of NOD mice, but the effect was limited and delayed. In the NOD and C57BL/6 strains, mrIL-1α had no influence on insulin levels in females, but significantly increased them in males (P<0·0001). Castration of NOD males abrogated the stimulatory effect of mrIL-1α on insulin secretion. Corticosterone secretion was stimulated by mrIL-1α in both sexes of NOD and C57BL/6 mice, and this effect was faster and greater in NOD females than in C57BL/6 females. The incomplete hypoglycemic response to mrIL-1α in females may be attributed to the anti-insulin effect of glucocorticoids, an effect which can be demonstrated when mrIL-1α is administered to adrenalectomized animals or when mrIL-1α is administered together with the glucocorticoid antagonist RU38486. In NOD males, in contrast, glucocorticoids did not play a major role in the limited hypoglycemic response to mrIL-1α, since RU38486 and adrenalectomy were not able to unmask a hypoglycemic effect. Moreover, NOD mice of both sexes were less sensitive than C57BL/6 mice to the hypoglycemic effect of insulin (2·5 U/kg), which suggests some degree of insulin-resistance in NOD mice. With regard to the effect of IL-1 on NOD mouse glycemia, therefore, these results suggest that glucocorticoids and/or androgens, according to the animal's sex, may induce a state of insulin-resistance.

Journal of Endocrinology (1996) 148, 139–148

Free access

Joshua A Kulas, Kendra L Puig and Colin K Combs

The amyloid precursor protein (APP) has been extensively investigated for its role in the production of amyloid beta (Aβ), a plaque-forming peptide in Alzheimer’s disease (AD). Epidemiological evidence suggests type 2 diabetes is a risk factor for AD. The pancreas is an essential regulator of blood glucose levels through the secretion of the hormones insulin and glucagon. Pancreatic dysfunction is a well-characterized consequence of type 1 and type 2 diabetes. In this study, we have examined the expression and processing of pancreatic APP to test the hypothesis that APP may play a role in pancreatic function and the pathophysiology of diabetes. Our data demonstrate the presence of APP within the pancreas, including pancreatic islets in both mouse and human samples. Additionally, we report that the APP/PS1 mouse model of AD overexpresses APP within pancreatic islets, although this did not result in detectable levels of Aβ. We compared whole pancreas and islet culture lysates by Western blot from C57BL/6 (WT), APP−/− and APP/PS1 mice and observed APP-dependent differences in the total protein levels of GLUT4, IDE and BACE2. Immunohistochemistry for BACE2 detected high levels in pancreatic α cells. Additionally, both mouse and human islets processed APP to release sAPP into cell culture media. Moreover, sAPP stimulated insulin but not glucagon secretion from islet cultures. We conclude that APP and its metabolites are capable of influencing the basic physiology of the pancreas, possibly through the release of sAPP acting in an autocrine or paracrine manner.

Open access

K E Lines, P J Newey, C J Yates, M Stevenson, R Dyar, G V Walls, M R Bowl and R V Thakker

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterised by the combined occurrence of parathyroid, pituitary and pancreatic islet tumours, and is due to mutations of the MEN1 gene, which encodes the tumour suppressor protein menin. Menin has multiple roles in genome stability, transcription, cell division and proliferation, but its mechanistic roles in tumourigenesis remain to be fully elucidated. miRNAs are non-coding single-stranded RNAs that post-transcriptionally regulate gene expression and have been associated with tumour development, although the contribution of miRNAs to MEN1-associated tumourigenesis and their relationship with menin expression are not fully understood. Alterations in miRNA expression, including downregulation of three putative ‘tumour suppressor’ miRNAs, miR-15a, miR-16-1 and let-7a, have been reported in several tumour types including non-MEN1 pituitary adenomas. We have therefore investigated the expression of miR-15a, miR-16-1 and let-7a in pituitary tumours that developed after 12 months of age in female mice with heterozygous knockout of the Men1 gene (Men1 +/ mice). The miRNAs miR-15a, miR-16-1 and let-7a were significantly downregulated in pituitary tumours (by 2.3-fold, P < 0.05; 2.1-fold P < 0.01 and 1.6-fold P < 0.05, respectively) of Men1 +/ mice, compared to normal WT pituitaries. miR-15a and miR-16-1 expression inversely correlated with expression of cyclin D1, a known pro-tumourigenic target of these miRNAs, and knockdown of menin in a human cancer cell line (HeLa), and AtT20 mouse pituitary cell line resulted in significantly decreased expression of miR-15a (P < 0.05), indicating that the decrease in miR-15a may be a direct result of lost menin expression.