Search Results

You are looking at 1 - 10 of 3,567 items for

  • Abstract: Diabetes x
  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 1 x
  • Abstract: Type 2 x
Clear All Modify Search
Full access

Thomas H Claus, Clark Q Pan, Joanne M Buxton, Ling Yang, Jennifer C Reynolds, Nicole Barucci, Michael Burns, Astrid A Ortiz, Steve Roczniak, James N Livingston, Kevin B Clairmont and James P Whelan

Type 2 diabetes is characterized by reduced insulin secretion from the pancreas and overproduction of glucose by the liver. Glucagon-like peptide-1 (GLP-1) promotes glucose-dependent insulin secretion from the pancreas, while glucagon promotes glucose output from the liver. Taking advantage of the homology between GLP-1 and glucagon, a GLP-1/glucagon hybrid peptide, dual-acting peptide for diabetes (DAPD), was identified with combined GLP-1 receptor agonist and glucagon receptor antagonist activity. To overcome its short plasma half-life DAPD was PEGylated, resulting in dramatically prolonged activity in vivo. PEGylated DAPD (PEG-DAPD) increases insulin and decreases glucose in a glucose tolerance test, evidence of GLP-1 receptor agonism. It also reduces blood glucose following a glucagon challenge and elevates fasting glucagon levels in mice, evidence of glucagon receptor antagonism. The PEG-DAPD effects on glucose tolerance are also observed in the presence of the GLP-1 antagonist peptide, exendin(9–39). An antidiabetic effect of PEG-DAPD is observed in db/db mice. Furthermore, PEGylation of DAPD eliminates the inhibition of gastrointestinal motility observed with GLP-1 and its analogues. Thus, PEG-DAPD has the potential to be developed as a novel dual-acting peptide to treat type 2 diabetes, with prolonged in vivo activity, and without the GI side-effects.

Full access

Xue Jiang, Jia Xiao, Mulan He, Ani Ma and Anderson O L Wong

Type II suppressor of cytokine signaling (SOCS) serve as feedback repressors for cytokines and are known to inhibit growth hormone (GH) actions. However, direct evidence for SOCS modulation of GH-induced insulin-like growth factor 1 (Igf1) expression is lacking, and the post-receptor signaling for SOCS expression at the hepatic level is still unclear. To shed light on the comparative aspects of SOCS in GH functions, grass carp was used as a model to study the role of type II SOCS in GH-induced Igf1 expression. Structural identity of type II SOCS, Socs1–3 and cytokine-inducible SH2-containing protein (Cish), was established in grass carp by 5’/3’-RACE, and their expression at both transcript and protein levels were confirmed in the liver by RT-PCR and LC/MS/MS respectively. In carp hepatocytes, GH treatment induced rapid phosphorylation of JAK2, STATs, MAPK, PI3K, and protein kinase B (Akt) with parallel rises in socs13 and cish mRNA levels, and these stimulatory effects on type II SOCS were shown to occur before the gradual loss of igf1 gene expression caused by prolonged exposure of GH. Furthermore, GH-induced type II SOCS gene expression could be negated by inhibiting JAK2, STATs, MEK1/2, P38 MAPK, PI3K, and/or Akt respectively. In CHO cells transfected with carp GH receptor, over-expression of these newly cloned type II SOCS not only suppressed JAK2/STAT5 signaling with GH treatment but also inhibited GH-induced grass carp Igf1 promoter activity. These results, taken together, suggest that type II SOCS could be induced by GH in the carp liver via JAK2/STATs, MAPK, and PI3K/Akt cascades and serve as feedback repressors for GH signaling and induction of igf1 gene expression.

Full access

Yoko Fujiwara, Masami Hiroyama, Atsushi Sanbe, Junji Yamauchi, Gozoh Tsujimoto and Akito Tanoue

[Arg8]-vasopressin (AVP) and oxytocin (OT) are neurohypophysial hormones which exert various actions, including the control of blood glucose, in some peripheral tissues. To investigate the type of receptors involved in AVP- and OT-induced glucagon secretion, we investigated the effect of these peptides on glucagon secretion in islets of wild-type (V1bR+/+) and vasopressin V1b receptor knockout (V1bR/−) mice. AVP-induced glucagon secretion was significantly inhibited by the selective V1b receptor antagonist, SSR149415 (30%), and OT-induced glucagon secretion by the specific OT receptor antagonist, d(CH2)5[Tyr(Me)2, Thr4, Tyr-NH2 9]OVT (CL-14-26) (45%), in islets of V1bR+/+mice. AVP- and OT-induced glucagon secretions were not by the antagonist of each, but co-incubation with both 10−6 M SSR149415 and 10−6 M CL-14-26 further inhibited AVP- and OT-induced glucagon secretions in islets of V1bR+/+ mice (57 and 69% of the stimulation values respectively). In addition, both AVP and OT stimulated glucagon secretion with the same efficacy in V1bR/− mice as in V1bR+/+ mice. AVP- and OT-induced glucagon secretion in V1bR/− mice was significantly inhibited by CL-14-26. These results demonstrate that V1b receptors can mediate OT-induced glucagon secretion and OT receptors can mediate AVP-induced glucagon secretion in islets from V1bR+/+mice in the presence of a heterologous antagonist, while AVP and OT can stimulate glucagon secretion through the OT receptors in V1bR/−mice, suggesting that the other receptor can compensate when one receptor is absent.

Full access

PM Jehle, DR Jehle, S Mohan and BO Bohm

Osteopenia has been ascribed to diabetics without residual insulin secretion and high insulin requirement. However, it is not known if this is partially due to disturbances in the IGF system, which is a key regulator of bone cell function. To address this question, we performed a cross-sectional study measuring serum levels of IGF-I, IGF-binding protein-1 (IGFBP-1), IGFBP-3, IGFBP-4 and IGFBP-5 by specific immunoassays in 52 adults with Type 1 (n=27) and Type 2 (n=25) diabetes mellitus and 100 age- and sex-matched healthy blood donors. In the diabetic patients, we further determined serum levels of proinsulin, intact parathyroid hormone (PTH), 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3 and several biochemical bone markers, including osteocalcin (OSC), bone alkaline phosphatase (B-ALP), carboxy-terminal propeptide of type I procollagen (PICP), and type I collagen cross-linked carboxy-terminal telopeptide (ICTP). Urinary albumin excretion was ascertained as a marker of diabetic nephropathy. Bone mineral density (BMD) of hip and lumbar spine was determined by dual-energy X-ray absorptiometry. Data are presented as means+/-s.e.m. Differences between the experimental groups were determined by performing a one-way analysis of variance (ANOVA), followed by Newman-Keuls test. Correlations between variables were assessed using univariate linear regression analysis and partial correlation analysis. Type 1 diabetics showed significantly lower IGF-I (119+/-8 ng/ml) and IGFBP-3 (2590+/-104 ng/ml) but higher IGFBP-1 levels (38+/-10 ng/ml) compared with Type 2 patients (170+/-13, 2910+/-118, 11+/-3 respectively; P<0.05) or healthy controls (169+/-5, 4620+/-192, 3.5+/-0.4 respectively; P<0.01). IGFBP-5 levels were markedly lower in both diabetic groups (Type 1, 228+/-9; Type 2, 242+/-11 ng/ml) than in controls (460+/-7 ng/ml,P<0. 01), whereas IGFBP-4 levels were similar in diabetics and controls. IGF-I correlated positively with IGFBP-3 and IGFBP-5 and negatively with IGFBP-1 and IGFBP-4 in all subjects. Type 1 patients showed a lower BMD of hip (83+/-2 %, Z-score) and lumbar spine (93+/-2 %) than Type 2 diabetics (93+/-5 %, 101+/-5 % respectively), reaching significance in the female subgroups (P<0.05). In Type 1 patients, BMD of hip correlated negatively with IGFBP-1 (r=-0.34, P<0.05) and IGFBP-4 (r=-0.3, P<0.05) but positively with IGFBP-5 (r=0.37, P<0. 05), which was independent of age, diabetes duration, height, weight and body mass index, as assessed by partial correlation analysis. Furthermore, biochemical markers indicating bone loss (ICTP) and increased bone turnover (PTH, OSC) correlated positively with IGFBP-1 and IGFBP-4 but negatively with IGF-I, IGFBP-3 and IGFBP-5, while the opposite was observed with bone formation markers (PICP, B-ALP) and vitamin D3 metabolites. In 20 Type 2 patients in whom immunoreactive proinsulin could be detected, significant positive correlations were found between proinsulin and BMD of hip (r=0.63, P<0.005), IGF-I (r=0.59, P<0.01) as well as IGFBP-3 (r=0.49, P<0.05). Type 1 and Type 2 patients with macroalbuminuria showed a lower BMD of hip, lower IGFBP-5 but higher IGFBP-4 levels, suggesting that diabetic nephropathy may contribute to bone loss by a disturbed IGF system. In conclusion, the findings of this study support the hypothesis that the imbalance between individual IGF system components and the lack of endogenous proinsulin may contribute to the lower BMD in Type 1 diabetics.

Full access

Gemma Llauradó, Victòria Ceperuelo-Mallafré, Carme Vilardell, Rafael Simó, Pilar Gil, Albert Cano, Joan Vendrell and José-Miguel González-Clemente

The aim of this study was to investigate the relationship between advanced glycation end products (AGEs) and arterial stiffness (AS) in subjects with type 1 diabetes without clinical cardiovascular events. A set of 68 patients with type 1 diabetes and 68 age- and sex-matched healthy subjects were evaluated. AGEs were assessed using serum concentrations of N-carboxy-methyl-lysine (CML) and using skin autofluorescence. AS was assessed by aortic pulse wave velocity (aPWV), using applanation tonometry. Patients with type 1 diabetes had higher serum concentrations of CML (1.18 vs 0.96 μg/ml; P=0.008) and higher levels of skin autofluorescence (2.10 vs 1.70; P<0.001) compared with controls. These differences remained significant after adjustment for classical cardiovascular risk factors. Skin autofluorescence was positively associated with aPWV in type 1 diabetes (r=0.370; P=0.003). No association was found between CML and aPWV. Skin autofluorescence was independently and significantly associated with aPWV in subjects with type 1 diabetes (β=0.380; P<0.001) after adjustment for classical cardiovascular risk factors. Additional adjustments for HbA1c, disease duration, and low-grade inflammation did not change these results. In conclusion, skin accumulation of autofluorescent AGEs is associated with AS in subjects with type 1 diabetes and no previous cardiovascular events. These findings indicate that determination of tissue AGE accumulation may be a useful marker for AS in type 1 diabetes.

Full access

B. Lahlou, B. Fossat, J. Porthé-Nibelle, L. Bianchini and M. Guibbolini


Cyclic AMP levels were measured in freshly isolated hepatocytes of the rainbow trout. Compared with basal values, the average levels were increased up to 60 times in a dose-dependent manner either by mammalian glucagon (concentration range 1 nmol– 1 μmol/l; dose giving half maximum response (EC50) 0· 18 μmol/l) or by forskolin (concentration range 0·1–100 μmol/l; EC50 about 10 μmol/l). These stimulatory effects were partially inhibited by fish or mammalian neurohypophysial hormones used at relatively high concentrations (1–5 μmol/l). It is suggested that these results are evidence for the presence of V1-type receptors in fish hepatocytes. Together with previous results obtained with gills on the hormonal inhibition of adenylate cyclase activity, they suggest that teleost fish may possess only V1-type receptors (or two V1-related types), while the V2 receptors have evolved (or have become functional) in higher vertebrates.

J. Endocr. (1988) 119, 439–445

Full access

Linda Ahlkvist, Bilal Omar, Anders Valeur, Keld Fosgerau and Bo Ahrén

Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized; however, the effect of long-term GCGR activation on β-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2 weeks) infused with the stable glucagon analog ZP-GA-1 and challenged with oral glucose and intravenous glucose±glucagon-like peptide 1 (GLP1). Islets were isolated to evaluate the insulin secretory response to glucose±GLP1 and their pancreas were collected for immunohistochemical analysis. Two weeks of ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP1. Also, we observed increased β-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of β-cell function during development of type 2 diabetes.

Full access

ST Dheen, K Rajkumar and LJ Murphy

Transgenic mice which overexpress insulin-like growth factor binding protein-1 (IGFPB-1) demonstrate fasting hyperglycemia, hyperinsulinemia and glucose intolerance in adult life. Here we have examined the ontogeny of pancreatic endocrine dysfunction and investigated islet cell proliferation and apoptosis in this mouse model. In addition we have examined pancreatic insulin content in transgenic mice derived from blastocyst transfer into non-transgenic mice. Transgenic mice were normoglycemic at birth but had markedly elevated plasma insulin levels, 56.2 +/- 4.5 versus 25.4 +/- 1.5 pmol/l, p < 0.001, and pancreatic insulin concentration, 60.5 +/- 2.5 versus 49.0 +/- 2.6 ng/mg of tissue, P < 0.01, compared with wild-type mice. Transgenic mice derived from blastocyst transfer to wild-type foster mothers had an elevated pancreatic insulin content similar to that seen in pups from transgenic mice. There was an age-related decline in pancreatic insulin content and plasma insulin levels and an increase in fasting blood glucose concentrations, such that adult transgenic mice had significantly less pancreatic insulin than wild-type mice. Pancreatic islet number and the size of mature islets were increased in transgenic animals at birth compared with wild-type mice. Both islet cell proliferation, measured by 5-bromo-2'-deoxyuridine labeling, and apoptosis, assessed by the in situ terminal deoxynucleotidyl transferase and nick translation assay, were increased in islets of newborn transgenic mice compared with wild-type mice. In adult mice both islet cell proliferation and apoptosis were low and similar in transgenic and wild-type mice. Islets remained significantly larger and more numerous in adult transgenic mice despite a reduction in pancreatic insulin content. These data suggest that overexpression of IGFBP-1, either directly or indirectly via local or systemic mechanisms, has a positive trophic effect on islet development.

Full access

SJ Conroy, I Green, G Dixon, PM Byrne, J Nolan, YH Abdel-Wahab, N McClenaghan, PR Flatt and P Newsholme

We have previously reported that newly diagnosed Type-1 diabetic patient sera potently suppressed insulin secretion from a clonal rat pancreatic beta-cell line (BRIN BD11) but did not alter cell viability. Here, we report that apoptosis in BRIN BD11 cells incubated in various sera types (fetal calf serum (FCS), normal human serum and Type-1 diabetic patient) was virtually undetectable. Although low levels of necrosis were detected, these were not significantly different between cells incubated in sera from different sources. ATP levels were reduced by approximately 30% while nitrite production increased twofold from BRIN BD11 cells incubated for 24 h in the presence of Type-1 diabetic patient sera compared with normal human sera. Additionally, ATP levels were reduced by approximately 40% and DNA fragmentation increased by more than 20-fold in BRIN BD11 cells incubated in FCS in the presence of a pro-inflammatory cytokine cocktail (interleukin-1beta, tumour necrosis factor-alpha and interferon-gamma), compared with cells incubated in the absence of cytokines. Nitric oxide production from BRIN BD11 cells was markedly increased (up to 10-fold) irrespective of sera type when the cytokine cocktail was included in the incubation medium. Type-1 diabetic patient sera significantly (P<0.001) raised basal levels of intracellular free Ca(2+ )concentration ([Ca(2+)](i)) in BRIN BD11 cells after a 24-h incubation. The alteration in [Ca(2+)](i) concentration was complement dependent, as removal of the early complement components C1q and C3 resulted in a significant reduction (P<0.01) of sera-induced [Ca(2+)](i )changes. We propose that the mechanism of Type-1 diabetic patient sera-induced inhibition of insulin secretion from clonal beta-cells may involve complement-stimulated elevation of [Ca(2+)](i) which attenuates the nutrient-induced insulin secretory process possibly by desensitizing the cell to further changes in Ca(2+).

Full access

Raylene A Reimer

Glucagon-like peptide-1 (GLP-1) is a potent insulin secretagogue released from L-cells in the intestine. Meat hydrolysate (MH) is a powerful activator of GLP-1 secretion in the human enteroendocrine NCI-H716 cell line, but the mechanisms involved in nutrient-stimulated GLP-1 secretion are poorly understood. The objective of this study was to characterize the intracellular signalling pathways regulating MH- and amino acid-induced GLP-1 secretion. Individually, the pharmacological inhibitors, SB203580 (inhibitor of p38 mitogen-activated protein kinase (MAPK)), wortmannin (inhibitor of phosphatidyl inositol 3-kinase) and U0126 (inhibitor of mitogen activated or extracellular signal-regulated protein kinase (MEK1/2) upstream of extracellular signal-regulated kinase (ERK)1/2) all inhibited MH-induced GLP-1 secretion. Further examination of the MAPK pathway showed that MH increased the phosphorylation of ERK1/2, but not p38 or c-Jun N-terminal kinase over 2–15 min. Incubation with SB203580 resulted in a decrease in phosphorylated p38 MAPK and a concomitant increase in the phosphorylation of ERK1/2. Phosphorylation of ERK1/2 was augmented by co-incubation of MH with SB203580. Inhibitors of protein kinase A and protein kinase C did not inhibit MH-induced GLP-1 secretion. In contrast to non-essential amino acids, essential amino acids (EAAs) increased GLP-1 secretion and similar to MH, activated ERK1/2. However, they also activated p38-suggesting type of protein may affect GLP-1 secretion. In conclusion, there appears to be a crosstalk between p38 and ERK1/2 MAPK in the human enteroendocrine cell with the activation of ERK1/2 common to both MH and EAA. Understanding the cellular pathways involved in nutrient-stimulated GLP-1 secretion has important implications for the design of new treatments aimed at increasing endogenous GLP-1 release in type-2 diabetes and obesity.