Search Results

You are looking at 1 - 10 of 3,736 items for

  • Abstract: Leptin x
  • Abstract: Insulin x
  • Abstract: Ghrelin x
  • Abstract: Diabetes x
  • Abstract: Adipose x
  • Abstract: Inflammation x
  • Abstract: Thermogenesis x
  • Abstract: Lipolysis x
  • Abstract: Atherosclerosis x
  • Abstract: metabo* x
Clear All Modify Search
Full access

Nailliw Z Preite, Bruna P P do Nascimento, Cynthia R Muller, Anna Laura V Américo, Talita S Higa, Fabiana S Evangelista, Carmen L Lancellotti, Felipe dos Santos Henriques, Miguel Luiz Batista Jr, Antonio C Bianco and Miriam O Ribeiro

The brown adipose tissue (BAT) mediates adaptive changes in metabolic rate by responding to the sympathetic nervous system through β-adrenergic receptors (AR). Here, we wished to define the role played by the ARβ3 isoform in this process. This study focused on the ARβ3 knockout mice (ARβ3KO), including responsiveness to cold exposure, diet-induced obesity, intolerance to glucose, dyslipidaemia and lipolysis in white adipose tissue (WAT). ARβ3KO mice defend core temperature during cold exposure (4°C for 5 h), with faster BAT thermal response to norepinephrine (NE) infusion when compared with wild-type (WT) mice. Despite normal BAT thermogenesis, ARβ3KO mice kept on a high-fat diet (HFD; 40% fat) for 8 weeks exhibited greater susceptibility to diet-induced obesity, markedly increased epididymal adipocyte area with clear signs of inflammation. The HFD-induced glucose intolerance was similar in both groups but serum hypertriglyceridemia and hypercholesterolemia were less intense in ARβ3KO animals when compared with WT controls. Isoproterenol-induced lipolysis in isolated white adipocytes as assessed by glycerol release was significantly impaired in ARβ3KO animals despite normal expression of key proteins involved in lipid metabolism. In conclusion, ARβ3 inactivation does not affect BAT thermogenesis but increases susceptibility to diet-induced obesity by dampening WAT lipolytic response to adrenergic stimulation.

Full access

Zhongyang Lu, Xiaoming Zhang, Yanchun Li, Junfei Jin and Yan Huang

Although it has been reported that deficiency of toll-like receptor 4 (TLR4) is associated with reduced atherosclerosis in atherosclerosis-prone mice and attenuated pro-inflammatory state in diabetic mice, it remains undetermined whether treatment with a TLR4 antagonist reduces atherosclerosis in nondiabetic or diabetic mice that have TLR4 expression. In this study, we determined the effect of Rhodobacter sphaeroides lipopolysaccharide (Rs-LPS), an established TLR4 antagonist, on early-stage atherosclerosis in nondiabetic and streptozotocin-induced diabetic apolipoprotein E-deficient (Apoe −/−) mice. Analysis of atherosclerotic lesions of both en face aortas and cross sections of aortic roots showed that administration of Rs-LPS in 14-week-old diabetic Apoe −/− mice for 10 weeks significantly reduced atherosclerotic lesions. Although atherosclerotic lesions in nondiabetic Apoe −/− mice appeared to be decreased by Rs-LPS treatment, the difference was not statistically significant. Metabolic study showed that Rs-LPS significantly lowered serum levels of cholesterol and triglycerides in nondiabetic mice but not in diabetic mice. Furthermore, immunohistochemistry studies showed that Rs-LPS inhibited the expression of interleukin 6 and matrix metalloproteinase-9 and reduced the content of monocytes and macrophages in atherosclerotic plaques. Taken together, this study demonstrated for the first time that TLR4 antagonist inhibited vascular inflammation and atherogenesis in diabetic Apoe −/− mice and lowered serum cholesterol and triglyceride levels in nondiabetic Apoe −/− mice.

Full access

Chiung-Kuei Huang, Soo Ok Lee, Eugene Chang, Haiyan Pang and Chawnshang Chang

Cardiovascular diseases (CVDs) are still the highest leading cause of death worldwide. Several risk factors have been linked to CVDs, including smoking, diabetes, hyperlipidemia, and gender among others. Sex hormones, especially the androgen and its receptor, androgen receptor (AR), have been linked to many diseases with a clear gender difference. Here, we summarize the effects of androgen/AR on CVDs, including hypertension, stroke, atherosclerosis, abdominal aortic aneurysm (AAA), myocardial hypertrophy, and heart failure, as well as the metabolic syndrome/diabetes and their impacts on CVDs. Androgen/AR signaling exacerbates hypertension, and anti-androgens may suppress hypertension. Androgen/AR signaling plays dual roles in strokes, depending on different kinds of factors; however, generally males have a higher incidence of strokes than females. Androgen and AR differentially modulate atherosclerosis. Androgen deficiency causes elevated lipid accumulation to enhance atherosclerosis; however, targeting AR in selective cells without altering serum androgen levels would suppress atherosclerosis progression. Androgen/AR signaling is crucial in AAA development and progression, and targeting androgen/AR profoundly restricts AAA progression. Men have increased cardiac hypertrophy compared with age-matched women that may be due to androgens. Finally, androgen/AR plays important roles in contributing to obesity and insulin/leptin resistance to increase the metabolic syndrome.

Full access

Ronald J van der Sluis, Tim van den Aardweg, Anne Q Reuwer, Marcel T Twickler, Florence Boutillon, Miranda Van Eck, Vincent Goffin and Menno Hoekstra

The pituitary-derived hormone prolactin has been suggested to stimulate the development of atherosclerosis and cardiovascular disease through its effects on metabolism and inflammation. In this study, we aimed to challenge the hypothesis that inhibition of prolactin function may beneficially affect atherosclerosis burden. Hereto, atherosclerosis-susceptible LDL receptor (Ldlr) knockout mice were transplanted with bone marrow from transgenic mice expressing the pure prolactin receptor antagonist Del1-9-G129R-hPRL or their non-transgenic littermates as control. Recipient mice expressing Del1-9-G129R-hPRL exhibited a decrease in plasma cholesterol levels (−29%; P<0.05) upon feeding a Western-type diet (WTD), which could be attributed to a marked decrease (−47%; P<0.01) in the amount of cholesterol esters associated with pro-atherogenic lipoproteins VLDL/LDL. By contrast, Del1-9-G129R-hPRL-expressing mice did not display any change in the susceptibility for atherosclerosis after 12 weeks of WTD feeding. Both the absolute atherosclerotic lesion size (223±33×103 μm2 for Del1-9-G129R-hPRL vs 259±32×103 μm2 for controls) and the lesional macrophage and collagen contents were not different between the two groups of bone marrow recipients. Importantly, Del1-9-G129R-hPRL exposure increased levels of circulating neutrophils (+91%; P<0.05), lymphocytes (+55%; P<0.05), and monocytes (+43%; P<0.05), resulting in a 49% higher (P<0.01) total blood leukocyte count. In conclusion, we have shown that prolactin receptor signaling inhibition uncouples the plasma atherogenic index from atherosclerosis susceptibility in Ldlr knockout mice. Despite an associated decrease in VLDL/LDL cholesterol levels, application of the prolactin receptor antagonist Del1-9-G129R-hPRL does not alter the susceptibility for initial development of atherosclerotic lesions probably due to the parallel increase in circulating leukocyte concentrations.

Full access

Hindrik Mulder

In this issue of Journal of Endocrinology, Schuyler et al. show that intimal lesions in atherosclerosis-prone diabetic apoE −/− mice are reduced by insulin treatment. An increase of metalloproteinase-9 expression was observed in untreated diabetic apoE −/− mice; this was absent in insulin-treated mice. The study suggests that hindering of tissue-remodeling metalloproteinases may account for the beneficial effects of proper metabolic control in patients with diabetes. This clinically relevant finding prompts further exploration.

Full access

Harman S Mattu and Harpal S Randeva

The discovery of leptin in 1994 sparked dramatic new interest in the study of white adipose tissue. It is now recognised to be a metabolically active endocrine organ, producing important chemical messengers – adipokines and cytokines (adipocytokines). The search for new adipocytokines or adipokines gained added fervour with the prospect of the reconciliation between cardiovascular diseases (CVDs), obesity and metabolic syndrome. The role these new chemical messengers play in inflammation, satiety, metabolism and cardiac function has paved the way for new research and theories examining the effects they have on (in this case) CVD. Adipokines are involved in a ‘good–bad’, yin–yang homoeostatic balance whereby there are substantial benefits: cardioprotection, promoting endothelial function, angiogenesis and reducing hypertension, atherosclerosis and inflammation. The flip side may show contrasting, detrimental effects in aggravating these cardiac parameters.

Full access

Salla Nuutinen, Liisa Ailanen, Eriika Savontaus and Petteri Rinne

Atherosclerosis is a chronic inflammatory disease of the arteries. The disease is initiated by endothelial dysfunction that allows the transport of leukocytes and low-density lipoprotein into the vessel wall forming atherosclerotic plaques. The melanocortin system is an endogenous peptide system that regulates, for example, energy homeostasis and cardiovascular function. Melanocortin treatment with endogenous or synthetic melanocortin peptides reduces body weight, protects the endothelium and alleviates vascular inflammation, but the long-term effects of melanocortin system activation on atheroprogression remain largely unknown. In this study, we evaluated the effects of transgenic melanocortin overexpression in a mouse model of atherosclerosis. Low-density lipoprotein receptor-deficient mice overexpressing alpha- and gamma3-MSH (MSH-OE) and their wild-type littermates were fed either a regular chow or Western-style diet for 16 weeks. During this time, their metabolic parameters were monitored. The aortae were collected for functional analysis, and the plaques in the aortic root and arch were characterised by histological and immunohistochemical stainings. The aortic expression of inflammatory mediators was determined by quantitative PCR. We found that transgenic MSH-OE improved glucose tolerance and limited atherosclerotic plaque formation particularly in Western diet-fed mice. In terms of aortic vasoreactivity, MSH-OE blunted alpha1-adrenoceptor-mediated vasoconstriction and enhanced relaxation response to acetylcholine, indicating improved endothelial function. In addition, MSH-OE markedly attenuated Western diet-induced upregulation of proinflammatory cytokines (Ccl2, Ccl5 and Il6) that contribute to the pathogenesis of atherosclerosis. These results show that the activation of the melanocortin system improves glucose homeostasis and limits diet-induced vascular inflammation and atherosclerotic plaque formation.

Full access

Xiaojun Zhou, Jianjun Dong, Li Zhang, Ju Liu, Xiaofeng Dong, Qing Yang, Fupeng Liu and Lin Liao

It is well known that hyperglycemia is a trigger of atherosclerosis in patients with diabetes mellitus. However, the role of hyperglycemia in restenosis remains unclear. In this study, we investigated the effects of hyperglycemia on restenosis. Stenosis was evaluated in two sets of diabetic rabbit models: i) diabetic restenosis versus nondiabetic restenosis and ii) diabetic atherosclerosis versus nondiabetic atherosclerosis. Our results indicated that there was no difference in rates of stenosis between the diabetic and the nondiabetic groups in restenosis rabbit models. However, the incidence of stenosis was significantly higher in the diabetic atherosclerosis group compared with the nondiabetic atherosclerosis group. Similarly, the intima–media thickness and cell proliferation rate were significantly increased in the diabetic atherosclerosis group compared with the nondiabetic atherosclerosis group, but there was no difference between the diabetic restenosis and the nondiabetic restenosis groups. Our results indicate that hyperglycemia is an independent risk factor for atherosclerosis, but it has no evident effect on restenosis. These findings indicate that the processes of atherosclerosis and restenosis may involve different pathological mechanisms.

Full access

A Albalat, C Liarte, S MacKenzie, L Tort, J V Planas and I Navarro

Tumor necrosis factor-α (TNFα) is a cytokine with multiple biological functions which, in mammals, has been shown to modulate muscle and adipose tissue metabolism. In fish, TNFα has been identified in several species. However, few studies have examined the role of TNFα in fish outside the immune system. In this study, we assessed the effects of human recombinant TNFα and conditioned media from rainbow trout lipopolysaccharide (LPS)-stimulated macrophages (LPS-MCM) on lipolysis in isolated rainbow trout adipocytes. Furthermore, we studied the effects of an LPS injection in vivo on lipid metabolism. In our study, human recombinant TNFα stimulated lipolysis in trout adipocytes in a time- and dose-dependent manner. Similarly, LPS-MCM stimulated lipolysis in trout adipocytes when compared with control conditioned medium. Experiments using specific inhibitors of the MAP kinase pathway showed that p44/42 and p38 are partially involved in the lipolytic effects of TNFα. On the other hand, adipocytes from LPS-injected rainbow trout showed higher basal lipolysis than adipocytes from control fish after 24 h, while this effect was not seen at 72 h. Furthermore, lipoprotein lipase (LPL) activity in adipose tissue of LPS-injected fish was lower than in the controls at 24 h. These data suggest that TNFα plays an important role in the control of lipid metabolism in rainbow trout by stimulating lipolysis in vitro and in vivo and by down-regulating LPL activity of adipose tissue in vivo.

Full access

Jerzy Bełtowski, Grażyna Wójcicka and Hieronim Jakubowski

The adipose tissue hormone leptin and homocysteine (Hcy)-thiolactone are linked to the pathogenesis of atherosclerosis through their interactions with the anti-atherogenic enzyme paraoxonase 1 that has the ability to hydrolyze Hcy-thiolactone and minimizes protein N-homocysteinylation. Here we examined the relationships between hyperleptinemia, Hcy-thiolactonase, and protein N-homocysteinylation in rats. Hyperleptinemia was induced in adult rats by administration of leptin for 7 days (0.25 mg/kg twice daily s.c). We found that serum Hcy-thiolactonase was lower in hyperleptinemic than in control animals (−41.0%, P<0.001). Leptin administration increased the level of N-linked Hcy in plasma proteins (+92.9%, P<0.01), but had no effect on plasma total Hcy. These effects were not reproduced by pair-feeding. We also found that the synthetic liver X receptor (LXR) agonist, T0901317 (1 mg/kg per day) normalized Hcy-thiolactonase and protein N-homocysteinylation levels in leptin-treated rats. However, leptin-induced increase in plasma isoprostane levels (a marker of oxidative stress) was not normalized by T0901317. The NADPH oxidase inhibitor apocynin prevented leptin-induced increase in isoprostane levels but did not normalize Hcy-thiolactonase and protein N-homocysteinylation levels. These results suggest that the decreased capacity to metabolize Hcy-thiolactone and concomitant increase in protein N-homocysteinylation contribute to pro-atherogenic effect of chronic hyperleptinemia, independently of oxidative stress. LXR agonists normalize Hcy-thiolactonase levels and decrease protein N-homocysteinylation, especially under conditions associated with excess leptin such as metabolic syndrome.