Search Results

You are looking at 131 - 140 of 1,216 items for

  • Abstract: Schlerostin x
  • Abstract: Vitamin D x
  • Abstract: Calcium x
  • Abstract: Mineral x
  • Abstract: Skeletal x
  • Abstract: Osteo* x
  • Abstract: Wnt x
  • Abstract: Growth Plate x
  • Abstract: Bone x
Clear All Modify Search
Restricted access

C E Evans, C Ward and I P Braidman

ABSTRACT

Bone metastases in breast cancer may be osteolytic, osteosclerotic, or a mixture of the two. Although stimulation of bone resorption by breast cancer cells has attracted some interest, the formation of osteosclerotic secondary tumours and the influence of human mammary carcinoma cells on osteoblasts (bone forming cells), both important in understanding breast cancer - bone interactions, have been largely neglected. We therefore examined the effects of conditioned medium (CM) from two cultured human breast cancer cell lines (MCF7 and ZR-75) and from primary cultures of breast carcinomas from two patients, on osteoblasts and recruitment of bone-resorbing cells (osteoclasts) in vitro. Osteoblast-like cells (BDC) were cultured from human trabecular bone explants. Osteoclast maturation was studied in fetal rat calvaria cultured on collagen gels. CM from the MCF-7 line and cells derived from one patient each inhibited BDC DNA synthesis, but stimulated osteoclast recruitment. In contrast, CM from the second patient's cells or ZR-75 enhanced DNA synthesis in BDC, but blocked osteoclast maturation. This suggests that human breast carcinomas secrete soluble factors which influence both osteoclasts and osteoblasts. A further unexpected implication is that mammary carcinoma cells may cause local osteosclerosis by directly stimulating osteoblasts, rather than through raised bone turnover in metastases.

Free access

Jung-Min Koh, Young-Sun Lee, Chang-Hyun Byun, Eun-Ju Chang, Hyunsoo Kim, Yong Hee Kim, Hong-Hee Kim and Ghi Su Kim

Growing evidence has shown a biochemical link between increased oxidative stress and reduced bone density. Although α-lipoic acid (α-LA) has been shown to act as a thiol antioxidant, its effect on bone cells has not been determined. Using proteomic analysis, we identified six differentially expressed proteins in the conditioned media of α-LA-treated human bone marrow stromal cell line (HS-5). One of these proteins, receptor activator of nuclear factor κB ligand (RANKL), was significantly up-regulated, as confirmed by immunoblotting with anti-RANKL antibody. ELISA showed that α-LA stimulated RANKL production in cellular extracts (membranous RANKL) about 5-fold and in conditioned medium (soluble RANKL) about 23-fold, but had no effect on osteoprotegerin (OPG) secretion. Despite increasing the RANKL/OPG ratio, α-LA showed a dose-dependent suppression of osteoclastogenesis, both in a coculture system of mouse bone marrow cells and osteoblasts and in a mouse bone marrow cell culture system, and reduced bone resorption in a dose-dependent manner. In addition, α-LA-induced soluble RANKL was not inhibited by matrix metalloprotease inhibitors, indicating that soluble RANKL is produced by α-LA without any posttranslational processing. In contrast, α-LA had no significant effect on the proliferation and differentiation of HS-5 cells. These results suggest that α-LA suppresses osteoclastogenesis by directly inhibiting RANKL–RANK mediated signals, not by mediating cellular RANKL production. In addition, our findings indicate that α-LA-induced soluble RANKL is not produced by shedding of membranous RANKL.

Restricted access

M. C. Slootweg, W. W. Most, E. van Beek, L. P. C. Schot, S. E. Papapoulos and C. W. G. M. Löwik

ABSTRACT

Insulin-like growth factor-I (IGF-I) is a potent stimulator of bone formation. Whether this growth factor also induces bone resorption has not been studied in detail. We used two organ culture systems to examine the direct effect of IGF-I on bone resorption. Fetal mouse radii/ulnae, containing mature osteoclasts, showed no response to IGF-I, indicating that osteoclastic activity is not influenced by IGF-I. Fetal mouse metacarpals/metatarsals, containing just osteoclast precursors and progenitors, showed an increase in resorption in response to IGF-I, indicating that IGF-I stimulates the formulation of osteoclast precursors/progenitors and thereby increases the number of osteoclasts.

Interleukin-6 (IL-6) has been hypothesized to be a mediator of bone resorptive agents such as parathyroid hormone (PTH). Both radii/ulnae and metacarpals/metatarsals reacted to IGF-I with an increase in IL-6 production. IL-6 production by UMR-106 osteogenic osteosarcoma cells was positively modulated by IGF-I, indicating that osteoblasts are likely to be the cells responsible for increased IL-6 production by the bones, and that IL-6 might be a mediatory of IGF-I-stimulated bone resorption.

Journal of Endocrinology (1992) 132, 433–438

Restricted access

M.C. Slootweg, A.G.H. Ederveen, L.P.C. Schot, W.G.E.J. Schoonen and H.J. Kloosterboer

ABSTRACT

Oestrogens play an important role in bone metabolism; they preserve bone mass after the menopause. Their action in bone has recently been shown to be, partly, a direct one, as oestrogen receptors and their effects have been demonstrated in bone cells. The role of progestogens in bone metabolism is less clear. In this study it has been shown that 17β-oestradiol exerts only a small, although not significant, stimulatory action with regard to SaOS-2 human osteosarcoma cell proliferation. A pure progestogen (Org 2058) has no effect when added alone. In combination with 17β-oestradiol, however, it has a highly synergistic action on SaOS-2 cell proliferation. The same effect was observed in primary rat osteoblasts, showing that this synergism is a general phenomenon in osteoblastic cells. High numbers of oestrogen and progestogen receptors have been demonstrated in SaOS-2 cells, indicating that the effects of these steroids are mediated via the normal route of steroid receptors. These data provide a cellular basis for the clinically recognized positive effect of oestrogen/progestogen combinations on bone formation.

Free access

Y Koshihara, K Hoshi, R Okawara, H Ishibashi and S Yamamoto

Accumulating evidence indicates that menaquinone-4 (MK-4), a vitamin K(2) with four isoprene units, inhibits osteoclastogenesis in murine bone marrow culture, but the reason for this inhibition is not yet clear, especially in human bone marrow culture. To clarify the inhibitory mechanism, we investigated the differentiation of colony-forming-unit fibroblasts (CFU-Fs) and osteoclasts in human bone marrow culture, to learn whether the enhancement of the differentiation of CFU-Fs from progenitor cells might relate to inhibition of osteoclast formation. Human bone marrow cells were grown in alpha-minimal essential medium with horse serum in the presence of MK-4 until adherent cells formed colonies (CFU-Fs). Colonies that stained positive for alkaline phosphatase activity (CFU-F/ALP(+)) were considered to have osteogenic potential. MK-4 stimulated the number of CFU-F/ALP(+) colonies in the presence or absence of dexamethasone. The stimulation was also seen in vitamin K(1) treatment. These cells had the ability to mineralize in the presence of alpha-glycerophosphate. In contrast, both MK-4 and vitamin K(1) inhibited 1,25 dihydroxyvitamin D(3)-induced osteoclast formation and increased stromal cell formation in human bone marrow culture. These stromal cells expressed ALP and Cbfa1. Moreover, both types of vitamin K treatment decreased the expression of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor (RANKL/ODF) and enhanced the expression of osteoprotegerin/osteoclast inhibitory factor (OPG/OCIF) in the stromal cells. The effective concentrations were 1.0 microM and 10 microM for the expression of RANKL/ODF and OPG/OCIF respectively. Vitamin K might stimulate osteoblastogenesis in bone marrow cells, regulating osteoclastogenesis through the expression of RANKL/ODF more than through that of OPG/OCIF.

Open access

Louise Grahnemo, Caroline Jochems, Annica Andersson, Cecilia Engdahl, Claes Ohlsson, Ulrika Islander and Hans Carlsten

Treatment with anti-inflammatory glucocorticoids is associated with osteoporosis. Many of the treated patients are postmenopausal women, who even without treatment have an increased risk of osteoporosis. Lymphocytes have been shown to play a role in postmenopausal and arthritis-induced osteoporosis, and they are targeted by glucocorticoids. The aim of this study was to investigate the mechanisms behind effects of glucocorticoids on bone during health and menopause, focusing on lymphocytes. Female C57BL/6 or SCID mice were therefore sham-operated or ovariectomized and 2 weeks later treatment with dexamethasone (dex), the nonsteroidal anti-inflammatory drug carprofen, or vehicle was started and continued for 2.5 weeks. At the termination of experiments, femurs were phenotyped using peripheral quantitative computed tomography and high-resolution micro-computed tomography, and markers of bone turnover were analyzed in serum. T and B lymphocyte populations in bone marrow and spleen were analyzed by flow cytometry. Dex-treated C57BL/6 mice had increased trabecular bone mineral density, but lower cortical content and thickness compared with vehicle-treated mice. The dex-treated mice also had lower levels of bone turnover markers and markedly decreased numbers of spleen T and B lymphocytes. In contrast, these effects could not be repeated when mice were treated with the nonsteroidal anti-inflammatory drug carprofen. In addition, dex did not increase trabecular bone in ovariectomized SCID mice lacking functional T and B lymphocytes. In contrast to most literature, the results from this study indicate that treatment with dex increased trabecular bone density, which may indicate that this effect is associated with corticosteroid-induced alterations of the lymphocyte populations.

Restricted access

C. Rebut-Bonneton, J. Demignon, B. Amor and L. Miravet

Fetal bone resorption was measured by an organ culture technique using fetuses from intact or thyroparathyroidectomized pregnant rats. These experiments were performed to investigate the effects of 1,25-dihydroxycholecalciferol (1,25-DHCC) and salmon calcitonin (SCT) in pregnant rats, on both fetal growth and fetal bone resorption.

Pregnant rats were given 0·1–0·5 μg 1,25-DHCC per day from day 17 of gestation: in intact rats bone resorption was increased and fetal growth decreased; 1,25-DHCC probably modified fetal bone resorption in the absence of fetal parathyroid secretion.

Infusion of SCT in minipumps (30 mu./h) did not modify plasma calcium levels in either the mother or fetuses, neither was bone resorption altered. In 1,25-DHCC-treated rats, SCT infusion resulted in an increase in fetal weight and a decrease in fetal bone resorption. On the other hand, SCT infusion was found to facilitate phosphate accumulation in fetuses.

At the end of the SCT infusion the SCT concentration was 450 ng/l in maternal plasma and 553± 60 ng/l in fetal plasma. Salmon calcitonin was shown to cross the placental barrier in the rats; it may interact with the effects of 1,25-DHCC in the fetus.

Restricted access

C. J. ROBINSON, T. J. MARTIN, E. W. MATTHEWS and I. MacINTYRE

SUMMARY

The effect of nephrectomy on the response to thyrocalcitonin was studied in three groups of rats: intact animals on stock diet; parathyroidectomized rats on stock diet; and parathyroidectomized rats on high calcium, low phosphorus diet.

In intact rats and in parathyroidectomized rats on a high calcium, low phosphorus diet, nephrectomy did not alter the fall in plasma calcium and phosphate produced by thyrocalcitonin. In parathyroidectomized rats on stock diet, however, plasma calcium was not changed by the hormone, but there was an isolated fall in phosphate which was prevented by previous nephrectomy.

Experiments with 45Ca showed that when plasma calcium was lowered by thyrocalcitonin this was caused by inhibition of bone resorption.

Since the hormone also causes phosphaturia, it was concluded that there are two sites of action: bone and kidney. The skeletal effect is usually dominant and the renal effect is the major one only when the rate of bone resorption is low.

Restricted access

J. H. Tobias, A. Gallagher and T. J. Chambers

ABSTRACT

We have previously found that administration of oestradiol-17β (OE2) to intact adult female rats of 19 days stimulates cancellous bone formation. However, this effect is not observed following longer periods of OE2 treatment, suggesting that the responsiveness of the skeleton to oestrogen's anabolic action is reduced after prolonged administration. A possible explanation for this is that oestrogen also suppresses bone resorption, which is an important stimulus for bone formation. We therefore investigated the effect of omitting OE2 for short periods, on the proximal tibial metaphysis of intact female rats. We found that, unlike continuous treatment with OE2 (40 pg/kg) for 56 days, omission of OE2 for 4 days out of every 20 was associated with a significant increase in cancellous bone volume. Although continuous and intermittent OE2 were both associated with a reduction in osteoclast surface, a decrease in the proportion of double fluorochrome-labelled surface was only seen after continuous OE2 treatment. We then studied the effects of longer periods of OE2 omission by giving OE2 (40 pg/kg) for three repeated cycles of: (1) OE2 for 16 days/vehicle for 4 days, (2) OE2 for 12 days/vehicle for 8 days, (3) OE2 for 8 days/vehicle for 12 days, or (4) OE2 for 4 days/vehicle for 16 days. We found a significant increase in cancellous bone volume when OE2 was stopped for either 4 or 8 days at a time. However, longer periods of OE2 omission did not affect bone volume, possibly because these were associated with an increase in bone resorption and/or a reduction in bone formation during the OE2-free period. In conclusion, we observed an increase in cancellous bone volume after prolonged treatment with oestrogen only if OE2 was omitted for short periods. This may be due, at least in part, to bone formation being maintained at a higher rate by such treatment than by either continuous OE2 administration or by intermittent administration where OE2 is discontinued for longer periods.

Journal of Endocrinology (1993) 139, 267–273

Free access

Abhaya Krishnan and Sridhar Muthusami

According to the World Health Organization (WHO) polycystic ovary syndrome (PCOS) occurs in 4–8% of women worldwide. The prevalence of PCOS in Indian adolescents is 12.2% according to the Indian Council of Medical Research (ICMR). The National Institute of Health has documented that it affects approximately 5 million women of reproductive age in the United States. Hormonal imbalance is the characteristic of many women with polycystic ovarian syndrome (PCOS). The influence of various endocrine changes in PCOS women and their relevance to bone remains to be documented. Hormones, which include gonadotrophin-releasing hormone (GnRH), insulin, the leutinizing/follicle-stimulating hormone (LH/FSH) ratio, androgens, estrogens, growth hormones (GH), cortisol, parathyroid hormone (PTH) and calcitonin are disturbed in PCOS women. These hormones influence bone metabolism in human subjects directly as well as indirectly. The imbalance in these hormones results in increased prevalence of osteoporosis in PCOS women. Limited evidence suggests that the drugs taken during the treatment of PCOS increase the risk of bone fracture in PCOS patients through endocrine disruption. This review is aimed at the identification of the relationship between bone mineral density and hormonal changes in PCOS subjects and identifies potential areas to study bone-related disorders in PCOS women.