Search Results

You are looking at 31 - 40 of 185 items for

  • Author: Li Li x
Clear All Modify Search
Restricted access

DONALD L. CURRYt, LESLIE L. BENNETT and CHOH HAO LI

SUMMARY

The hamster exhibits a biphasic pattern of insulin secretion; however, the dynamic response differs qualitatively from that of the rat in that there is a steady-state second release phase. A marked attenuation of insulin secretion as a result of hypophysectomy was observed after 3 weeks, but not after 2 weeks. This depression of insulin secretion was restored to near or above normal levels by bovine growth hormone, human growth hormone, and prolactin.

Free access

T Ubuka, H Sakamoto, D Li, K Ukena and K Tsutsui

We recently found lumbosacral sympathetic ganglionic galanin neurons innervating the quail uterine oviduct. Galaninergic innervation of the uterine muscle may be essential for avian oviposition, as galanin evoked oviposition through a mechanism of induction of vigorous uterine contraction. The questions arising from these findings are: what changes occur in galanin expression in the sympathetic ganglionic galanin neuron during development, and what is the hormonal factor(s) that induces galanin expression in this neuron? Therefore, the present study examined the developmental changes in galanin of the quail sympathetic ganglionic neuron and uterus, and the effect of administration of ovarian sex steroids on galanin induction. Immature birds reared under long-day photoperiods from 4 weeks of age demonstrated progressive increases in galanin levels both per unit ganglionic protein (concentration) and per ganglia (content) concurrent with ganglionic development during weeks 4--13. The uterine galanin content and uterine weight also increased progressively during the same period, but the galanin concentration in the uterus at 4 weeks was high due to the much smaller tissue mass. Immunocytochemical analysis with anti-galanin serum showed that immunoreactive ganglionic cells were few and small at 4 weeks and increased progressively thereafter. Administration of oestradiol-17 beta to immature birds at 3 weeks of age for 1 week increased both the galanin concentration and content in the ganglia without ganglionic growth. A marked increase in galanin-immunoreactive ganglionic cells was detected following oestradiol treatment. In contrast, progesterone increased ganglionic galanin levels, but the effects were low. Expression of the mRNAs encoding oestrogen receptor-alpha and -beta (ER alpha and ER beta) in the ganglionic tissue was verified by RT-PCR/Southern blot analysis. Immunocytochemical staining with anti-ER serum further revealed an intense immunoreaction restricted to the nucleus of ganglionic neurons. These results suggest that ovarian sex steroids, in particular oestradiol-17 beta, contribute as hormonal factors to galanin induction, which takes place in the lumbosacral sympathetic ganglionic neurons innervating avian uterine oviduct during development. Oestradiol may act directly on this ganglionic neuron through intra-nuclear receptor-mediated mechanisms to induce galanin.

Free access

R Wang, N Yashpal, F Bacchus and J Li

Hepatocyte growth factor (HGF) has been suggested to be a potent regulator of β-cell function and proliferation. The purpose of this study was to investigate whether HGF could regulate the proliferation and differentiation of islet-derived epithelial monolayers into insulin-producing cells. We have generated islet-derived epithelial monolayers that are enriched with cells expressing c-Kit, a tyrosine kinase receptor and putative marker, from isolated postnatal rat islets. Monolayers were cultured on type I collagen gel and treated in defined differentiation medium with or without HGF (50 ng/ml) for 7 days. Subsequently, the expression of transcription factors and pancreatic endocrine cell markers as well as c-Kit expression were compared between the HGF (HGF+), no HGF treatment (HGF) and monolayers without differentiation medium (control) groups, using immunocytochemical and RT-PCR approaches. We observed that the number of c-Kit-, glucose transport type 2 (Glut2)- and the transcription factor pancreatic duodenal homeobox-1 (PDX-1)-expressing cells were significantly increased in the HGF+ group. The expression of insulin at the mRNA and protein level was also increased in this treatment group with a 1.7-fold increase in basal insulin release and a 2.3-fold increase in insulin content in comparison with the HGF group. A high proliferative capacity was also found in the HGF+ group. Co-localization of insulin and PDX-1 or Glut2 was revealed frequently in cells treated with HGF+ with occasional co-staining of c-Kit and insulin observed. This study showed that HGF can activate the proliferation and differentiation of islet-derived epithelial monolayer into insulin-producing cells. However, no formation of islet-like clusters was observed. Taken together, this study implies that HGF mediates differentiation of immature cell types into insulin-expressing cells; however, HGF supplementation alone is insuffcient in restoring full β-cell function.

Restricted access

B. A. DONEEN, H. A. BERN and CHOH HAO LI

SUMMARY

These studies are concerned with the structural and functional evolution of the ancestrally related pituitary prolactins and somatotrophins. Prolactin-like biological activities of human somatotrophin (hGH) and its peptide fragments were bioassayed in vitro on the mouse mammary gland and the teleost urinary bladder. Plasmin modified-hGH was as active as hGH in both bioassays. The NH2-terminal 134-residue fragment possessed about 10% of the lactogenic and urinary bladder potency of hGH, whereas the CO2H-terminal 51-residue fragment was inactive at the concentrations observed. These results suggest that the same regions of primary structure are responsible for the prolactin-like actions of hGH on the target organs of lower and higher vertebrates. Alteration of the tertiary structure of hGH, human chorionic somatomammotrophin, and ovine prolactin by performic acid oxidation destroys the mammary gland activities of these hormones.

Free access

G Li, Y Zhang, JT Wilsey and PJ Scarpace

The effects of the chronic activation of the central melanocortin (MC) system by melanotan II (MTII) were assessed in chow-fed (CH) and high-fat (HF) diet-induced obese (DIO) Sprague-Dawley rats. Six-day central infusion of MTII (1 nmol/day) reduced body weight and visceral adiposity compared with ad libitum-fed control and pair-fed groups and markedly suppressed caloric intake in both CH and DIO rats. The anorexic response to MTII was similar in DIO relative to CH rats. MTII induced a sustained increase in oxygen consumption in DIO but a delayed response in CH rats. In both diet groups, MTII reduced serum insulin and cholesterol levels compared with controls. HF feeding increased brown adipose tissue (BAT) uncoupling protein 1 (UCP1) by over twofold, and UCP1 levels were further elevated in MTII-treated CH and DIO rats. MTII lowered acetyl-CoA carboxylase expression and prevented the reduction in muscle-type carnitine palmitoyltransferase I mRNA by pair-feeding in the muscle of DIO rats. Compared with CH controls, hypothalamic MC3 and MC4 receptor expression levels were reduced in DIO controls. This study has demonstrated that, despite reduced hypothalamic MC3/MC4 receptor expression, anorexic and thermogenic responses to MTII are unabated with an initial augmentation of energy expenditure in DIO versus CH rats. The HF-induced up-regulation of UCP1 in BAT may contribute to the immediate increase in MTII-stimulated thermogenesis in DIO rats. MTII also increased fat catabolism in the muscle of DIO rats and improved glucose and cholesterol metabolism in both groups.

Free access

MA Lawson, D Li, CA Glidewell-Kenney and FJ Lopez

Androgens have a profound effect on the hypothalamic-pituitary axis by reducing the synthesis and release of the pituitary gonadotropin LH. The effect on LH is partly a consequence of a direct, steroid-dependent action on pituitary function. Although androgen action has been well studied in vivo, in vitro cell models of androgen action on pituitary gonadotropes have been scarce. Recently, an LH-expressing cell line, LbetaT2, was generated by tumorigenesis targeted to the LH-producing cells of the mouse pituitary. The purpose of these studies was to determine the presence of androgen receptor (AR) and establish its function in this cell line. RT-PCR analysis indicated that the LbetaT2 cell line expresses AR mRNA. Transient transfection assays, using the mouse mammary tumor virus (MMTV) promoter, showed that a functional AR is also present. Testosterone (TEST), dihydrotestosterone (DHT), 7alpha-methyl-19-nortestosterone (MENT), and fluoxymesterone (FLUOXY) increased reporter gene activity in the rank order of potencies MENT>DHT> TEST>FLUOXY. Additionally, activation of MMTV promoter activity by DHT in LbetaT2 cells was diminished by the AR antagonists casodex and 2-hydroxy-flutamide, indicating that the effects of DHT are mediated through AR. In summary, these studies showed that the LbetaT2 cell line is a useful model for the evaluation and molecular characterization of androgen action in pituitary gonadotropes.

Free access

R Wang, J Li, N Yashpal and N Gao

There has over the last several years been renewed interest in developing a system for generating new islets and a search for a self-renewing population in the pancreas. In particular, the neural stem cell marker nestin has been implicated as an islet precursor marker and its immunoreactivity has been localized in the islets of Langerhans. This study examines islet-derived epithelial monolayers expanded ex vivo to provide a source of nestin-expressing progenitor cells – a model that will help us understand the role of nestin-expressing cells in islet cell development. When cultured on a type I collagen gel, islets formed confluent monolayers which lacked endocrine phenotypes but were positive for cytokeratin 20 and contained an increased proportion of proliferating nestin-expressing cells, reaching a maximum of 54±10%. Co-expression studies demonstrated that the nestin-positive cells are heterogeneous, with some nestin-expressing cells co-localizing with the transcription factor PDX-1 and glucose transporter type 2 or lack of co-expression with vimentin. When clonal populations of nestin-positive cells were expanded and subjected to a differentiation protocol, only a population that expressed the transcription factor PDX-1 at the mRNA level was capable of re-expressing insulin at the mRNA and protein level. In conclusion, these studies demonstrate that expanded nestin-expressing cells in vitro from islet-derived epithelial monolayers are heterogeneous; clonal analysis of nestin-positive cells reveals that a distinct subpopulation of nestin/PDX-1-expressing cells is capable of forming insulin-producing cells.

Free access

Ting Chen, Zhiguo Tang, Aifen Yan, Wensheng Li and Haoran Lin

GH secretagogue receptor (GHSR) is the receptor of ghrelin, a circulating GH-releasing and appetite-inducing hormone. In this paper, two Ghsr cDNAs, gpGhsr1a and gpGhsr1b, were identified and characterized in a teleost, the orange-spotted grouper (Epinephelus coioides). The gpGHSR1a is 1512 bp in length with an open reading frame (ORF) that encodes a protein of 383 amino acids with seven transmembrane (TM) domains, while the 1703 bp gpGHSR1b contains an ORF encoding for 303 amino acids with five TM domains. Comparison between cDNA and gene sequences showed that the two transcripts are two alternative splicing forms of a single gpGhsr gene. Tissue distribution and ontogeny of two gpGhsr mRNAs were examined by RT-PCR. The gpGHSR1a is mainly expressed in brain and pituitary gland, when compared with a more widespread expression of gpGHSR1b. During embryonic and larval development, the gpGhsr1b mRNA appears before the gpGhsr1a mRNA. Furthermore, quantitative real-time PCR performed on brain showed that both transcripts have the highest expression level in the pituitary gland. The expression level of gpGHSR1a was generally higher than that of gpGHSR1b. GHSR expressing cells were also detected widely in grouper brain by in situ hybridization, with a broader distribution than previous reports in mammals. Finally, an in vitro study showed that expression of both gpGHSR transcripts in pituitary and hypothalamus is downregulated by GH and ghrelin but not by des-acyl ghrelin, and this suggests that feedback regulation of GHSR also exists in teleostean fishes.

Free access

Shiping Su, Xiaoxia Sun, Xiuhong Zhou, Fuigui Fang and Yunsheng Li

The bidirectional regulation of thymulin in the reproductive-endocrine function of the hypothalamic–pituitary–gonadal (HPG) axis of rats immunized against GnRH remains largely unclear. We explored the alterations in hormones in the HPG axis in immunized rats to dissect the repressive effect of immunization on thymulin, and to clarify the interrelation of reproductive hormones and thymulin in vivo. The results showed that, in the first 2 weeks of booster immunization, thymulin was repressed when reproductive hormones were severely reduced. The self-feedback regulation of thymulin was then stimulated in later immune stages: the rising circulating thymulin upregulated LH and FSH, including GnRH in the hypothalamus, although the levels of those hormones were still significantly lower than in the control groups. In astrocytes, thymulin produced a feedback effect in regulated GnRH neurons. However, in the arcuate nucleus (Arc) and the median eminence (ME), the mediator of astrocytes and other glial cells were also directly affected by reproductive hormones. Thus, in immunized rats, the expression of glial fibrillary acidic protein was distinctly stimulated in the Arc and ME. This study demonstrated that thymulin was downregulated by immunization against GnRH in early stage. Subsequently, the self-feedback regulation was provoked by low circulating thymulin. Thereafter, rising thymulin levels promoted pituitary gonadotropins levels, while acting directly on GnRH neurons, which was mediated by astrocytes in a region-dependent manner in the hypothalamus.

Free access

Yuqing Wu, Yinyan Xu, Hong Zhou, Jin Tao and Shengnan Li

Urocortin (UCN), a newly identified, 40-amino-acid, corticotropin-releasing hormone (CRH) structurally related peptide, has been demonstrated to be expressed in the central nervous system and many peripheral tissues of rats and man. This study aimed to investigate the expression profile of UCN in rat lung and the effect of UCN on lung vascular permeability. The expression of UCN mRNA was detected by reverse transcriptase PCR (RT–PCR). UCN peptide was measured by immunohistochemistry and Western blot analysis. We found that both UCN mRNA and peptide were obviously expressed in rat lung. Immunohistochemistry results showed that UCN peptide is mainly expressed in bronchial epithelium mucosa and alveolar epithelium. We also found that rats receiving inhalation aerosol of UCN had a significant elevation of lung vascular permeability compared with rats receiving vehicle and ovalbumin (OVA) by the Evans blue (EB) technique. UCN aerosol inhalation resulted in obvious pulmonary congestion and edema observed under light microscope by hematoxylin and eosin (HE) staining. The nonselective peptide CRH receptor antagonist astressin markedly reduced lung vascular permeability triggered by UCN. Enhanced pulmonary vascular permeability induced by UCN was markedly inhibited by pretreatment with the mast-cell stabilizer cromolyn and histamine-1 (H1) receptor antagonist azelastine respectively, but not by the leukotriene receptor antagonist montelukast. In summary, in the present study, we demonstrated for the first time that UCN is expressed in rat lung and contributes to an increase in lung vascular permeability through activation of CRH receptors. Mast cells and histamine may be involved in this effect of UCN. Peripherally produced UCN in lung may act as an autocrine and paracrine proinflammatory factor.