Search Results

You are looking at 41 - 50 of 183 items for

  • Author: Li Li x
Clear All Modify Search
Free access

R Wang, J Li, N Yashpal and N Gao

There has over the last several years been renewed interest in developing a system for generating new islets and a search for a self-renewing population in the pancreas. In particular, the neural stem cell marker nestin has been implicated as an islet precursor marker and its immunoreactivity has been localized in the islets of Langerhans. This study examines islet-derived epithelial monolayers expanded ex vivo to provide a source of nestin-expressing progenitor cells – a model that will help us understand the role of nestin-expressing cells in islet cell development. When cultured on a type I collagen gel, islets formed confluent monolayers which lacked endocrine phenotypes but were positive for cytokeratin 20 and contained an increased proportion of proliferating nestin-expressing cells, reaching a maximum of 54±10%. Co-expression studies demonstrated that the nestin-positive cells are heterogeneous, with some nestin-expressing cells co-localizing with the transcription factor PDX-1 and glucose transporter type 2 or lack of co-expression with vimentin. When clonal populations of nestin-positive cells were expanded and subjected to a differentiation protocol, only a population that expressed the transcription factor PDX-1 at the mRNA level was capable of re-expressing insulin at the mRNA and protein level. In conclusion, these studies demonstrate that expanded nestin-expressing cells in vitro from islet-derived epithelial monolayers are heterogeneous; clonal analysis of nestin-positive cells reveals that a distinct subpopulation of nestin/PDX-1-expressing cells is capable of forming insulin-producing cells.

Free access

G Li, Y Zhang, JT Wilsey and PJ Scarpace

The effects of the chronic activation of the central melanocortin (MC) system by melanotan II (MTII) were assessed in chow-fed (CH) and high-fat (HF) diet-induced obese (DIO) Sprague-Dawley rats. Six-day central infusion of MTII (1 nmol/day) reduced body weight and visceral adiposity compared with ad libitum-fed control and pair-fed groups and markedly suppressed caloric intake in both CH and DIO rats. The anorexic response to MTII was similar in DIO relative to CH rats. MTII induced a sustained increase in oxygen consumption in DIO but a delayed response in CH rats. In both diet groups, MTII reduced serum insulin and cholesterol levels compared with controls. HF feeding increased brown adipose tissue (BAT) uncoupling protein 1 (UCP1) by over twofold, and UCP1 levels were further elevated in MTII-treated CH and DIO rats. MTII lowered acetyl-CoA carboxylase expression and prevented the reduction in muscle-type carnitine palmitoyltransferase I mRNA by pair-feeding in the muscle of DIO rats. Compared with CH controls, hypothalamic MC3 and MC4 receptor expression levels were reduced in DIO controls. This study has demonstrated that, despite reduced hypothalamic MC3/MC4 receptor expression, anorexic and thermogenic responses to MTII are unabated with an initial augmentation of energy expenditure in DIO versus CH rats. The HF-induced up-regulation of UCP1 in BAT may contribute to the immediate increase in MTII-stimulated thermogenesis in DIO rats. MTII also increased fat catabolism in the muscle of DIO rats and improved glucose and cholesterol metabolism in both groups.

Free access

Yuhui Liu, Le Zhang, Jing Li, Zhongyan Shan and Weiping Teng

Marginal iodine deficiency is a major health problem in pregnant women, but its impact on nerve and intelligence development in offspring has been rarely reported. Our study aimed to investigate the effects of maternal marginal iodine deficiency on nerve and cognitive development in offspring and the related mechanisms. Marginal iodine-deficient rats were given 3 μg iodine per day, while normal control rats were given 4 μg iodine daily. Western blot was used to detect the amounts of brain-derived neurotropic factor (BDNF) and early growth response protein 1 (EGR1) in the hippocampus of each group. Immunohistochemistry was used to measure c-jun and c-fos expression in the hippocampal CA1 region. Finally, the water maze method was used to measure spatial performance. Free thyroxine (FT4) levels in marginal iodine-deficient rats decreased by about 30%. Seven days after birth, EGR1 and BDNF protein levels significantly decreased in the hippocampus of marginal iodine deficiency rats compared with the normal control group. In addition, c-jun and c-fos expression in the hippocampus of 40-day-old rats was decreased in marginal iodine-deficient rats, compared with control. The spatial learning and memory ability of 40-day-old marginal iodine-deficient rats had a downward trend compared with the normal control group. FT4 significantly decreased after pregnancy in rats with marginal iodine deficiency, affecting the expression of related proteins in the brain of offspring.

Free access

MA Lawson, D Li, CA Glidewell-Kenney and FJ Lopez

Androgens have a profound effect on the hypothalamic-pituitary axis by reducing the synthesis and release of the pituitary gonadotropin LH. The effect on LH is partly a consequence of a direct, steroid-dependent action on pituitary function. Although androgen action has been well studied in vivo, in vitro cell models of androgen action on pituitary gonadotropes have been scarce. Recently, an LH-expressing cell line, LbetaT2, was generated by tumorigenesis targeted to the LH-producing cells of the mouse pituitary. The purpose of these studies was to determine the presence of androgen receptor (AR) and establish its function in this cell line. RT-PCR analysis indicated that the LbetaT2 cell line expresses AR mRNA. Transient transfection assays, using the mouse mammary tumor virus (MMTV) promoter, showed that a functional AR is also present. Testosterone (TEST), dihydrotestosterone (DHT), 7alpha-methyl-19-nortestosterone (MENT), and fluoxymesterone (FLUOXY) increased reporter gene activity in the rank order of potencies MENT>DHT> TEST>FLUOXY. Additionally, activation of MMTV promoter activity by DHT in LbetaT2 cells was diminished by the AR antagonists casodex and 2-hydroxy-flutamide, indicating that the effects of DHT are mediated through AR. In summary, these studies showed that the LbetaT2 cell line is a useful model for the evaluation and molecular characterization of androgen action in pituitary gonadotropes.

Free access

Shiping Su, Xiaoxia Sun, Xiuhong Zhou, Fuigui Fang and Yunsheng Li

The bidirectional regulation of thymulin in the reproductive-endocrine function of the hypothalamic–pituitary–gonadal (HPG) axis of rats immunized against GnRH remains largely unclear. We explored the alterations in hormones in the HPG axis in immunized rats to dissect the repressive effect of immunization on thymulin, and to clarify the interrelation of reproductive hormones and thymulin in vivo. The results showed that, in the first 2 weeks of booster immunization, thymulin was repressed when reproductive hormones were severely reduced. The self-feedback regulation of thymulin was then stimulated in later immune stages: the rising circulating thymulin upregulated LH and FSH, including GnRH in the hypothalamus, although the levels of those hormones were still significantly lower than in the control groups. In astrocytes, thymulin produced a feedback effect in regulated GnRH neurons. However, in the arcuate nucleus (Arc) and the median eminence (ME), the mediator of astrocytes and other glial cells were also directly affected by reproductive hormones. Thus, in immunized rats, the expression of glial fibrillary acidic protein was distinctly stimulated in the Arc and ME. This study demonstrated that thymulin was downregulated by immunization against GnRH in early stage. Subsequently, the self-feedback regulation was provoked by low circulating thymulin. Thereafter, rising thymulin levels promoted pituitary gonadotropins levels, while acting directly on GnRH neurons, which was mediated by astrocytes in a region-dependent manner in the hypothalamus.

Free access

Hyunju Chung, Endan Li, Yumi Kim, Sehee Kim and Seungjoon Park

Ghrelin, an endogenous ligand for the GH secretagogue receptor (GHS-R) receptor 1a (GHS-R1a), has been implicated in several physiologic processes involving the hippocampus. The aim of this study was to investigate the molecular mechanisms of ghrelin-stimulated neurogenesis using cultured adult rat hippocampal neural stem cells (NSCs). The expression of GHS-R1a was detected in hippocampal NSCs, as assessed by western blot analysis and immunocytochemistry. Ghrelin treatment increased the proliferation of cultured hippocampal NSCs assessed by BrdU incorporation. The exposure of cells to the receptor-specific antagonist d-Lys-3-GHRP-6 abolished the proliferative effect of ghrelin. By contrast, ghrelin showed no significant effect on cell differentiation. The expression of GHS-R1a was significantly increased by ghrelin treatment. The analysis of signaling pathways showed that ghrelin caused rapid activation of ERK1/2 and Akt, which were blocked by the GHS-R1a antagonist. In addition, ghrelin stimulated the phosphorylation of Akt downstream effectors, such as glycogen synthase kinase (GSK)-3β, mammalian target of rapamycin (mTOR), and p70S6K. The activation of STAT3 was also caused by ghrelin treatment. Furthermore, pretreatment of cells with specific inhibitors of MEK/ERK1/2, phosphatidylinositol-3-kinase (PI3K)/Akt, mTOR, and Jak2/STAT3 attenuated ghrelin-induced cell proliferation. Taken together, our results support a role for ghrelin in adult hippocampal neurogenesis and suggest the involvement of the ERK1/2, PI3K/Akt, and STAT3 signaling pathways in the mediation of the actions of ghrelin on neurogenesis. Our data also suggest that PI3K/Akt-mediated inactivation of GSK-3β and activation of mTOR/p70S6K contribute to the proliferative effect of ghrelin.

Free access

R Wang, N Yashpal, F Bacchus and J Li

Hepatocyte growth factor (HGF) has been suggested to be a potent regulator of β-cell function and proliferation. The purpose of this study was to investigate whether HGF could regulate the proliferation and differentiation of islet-derived epithelial monolayers into insulin-producing cells. We have generated islet-derived epithelial monolayers that are enriched with cells expressing c-Kit, a tyrosine kinase receptor and putative marker, from isolated postnatal rat islets. Monolayers were cultured on type I collagen gel and treated in defined differentiation medium with or without HGF (50 ng/ml) for 7 days. Subsequently, the expression of transcription factors and pancreatic endocrine cell markers as well as c-Kit expression were compared between the HGF (HGF+), no HGF treatment (HGF) and monolayers without differentiation medium (control) groups, using immunocytochemical and RT-PCR approaches. We observed that the number of c-Kit-, glucose transport type 2 (Glut2)- and the transcription factor pancreatic duodenal homeobox-1 (PDX-1)-expressing cells were significantly increased in the HGF+ group. The expression of insulin at the mRNA and protein level was also increased in this treatment group with a 1.7-fold increase in basal insulin release and a 2.3-fold increase in insulin content in comparison with the HGF group. A high proliferative capacity was also found in the HGF+ group. Co-localization of insulin and PDX-1 or Glut2 was revealed frequently in cells treated with HGF+ with occasional co-staining of c-Kit and insulin observed. This study showed that HGF can activate the proliferation and differentiation of islet-derived epithelial monolayer into insulin-producing cells. However, no formation of islet-like clusters was observed. Taken together, this study implies that HGF mediates differentiation of immature cell types into insulin-expressing cells; however, HGF supplementation alone is insuffcient in restoring full β-cell function.

Free access

Zhongyang Lu, Xiaoming Zhang, Yanchun Li, Junfei Jin and Yan Huang

Although it has been reported that deficiency of toll-like receptor 4 (TLR4) is associated with reduced atherosclerosis in atherosclerosis-prone mice and attenuated pro-inflammatory state in diabetic mice, it remains undetermined whether treatment with a TLR4 antagonist reduces atherosclerosis in nondiabetic or diabetic mice that have TLR4 expression. In this study, we determined the effect of Rhodobacter sphaeroides lipopolysaccharide (Rs-LPS), an established TLR4 antagonist, on early-stage atherosclerosis in nondiabetic and streptozotocin-induced diabetic apolipoprotein E-deficient (Apoe −/−) mice. Analysis of atherosclerotic lesions of both en face aortas and cross sections of aortic roots showed that administration of Rs-LPS in 14-week-old diabetic Apoe −/− mice for 10 weeks significantly reduced atherosclerotic lesions. Although atherosclerotic lesions in nondiabetic Apoe −/− mice appeared to be decreased by Rs-LPS treatment, the difference was not statistically significant. Metabolic study showed that Rs-LPS significantly lowered serum levels of cholesterol and triglycerides in nondiabetic mice but not in diabetic mice. Furthermore, immunohistochemistry studies showed that Rs-LPS inhibited the expression of interleukin 6 and matrix metalloproteinase-9 and reduced the content of monocytes and macrophages in atherosclerotic plaques. Taken together, this study demonstrated for the first time that TLR4 antagonist inhibited vascular inflammation and atherogenesis in diabetic Apoe −/− mice and lowered serum cholesterol and triglyceride levels in nondiabetic Apoe −/− mice.

Free access

Jiyeon Lee, Eunjin Lim, Yumi Kim, Endan Li and Seungjoon Park

Ghrelin is an endogenous ligand for GH secretagogue receptor type 1a (GHSR1a), and is produced and released mainly from the stomach. It has been recently demonstrated that ghrelin can function as a neuroprotective factor by inhibiting apoptotic pathways. Kainic acid (KA), an excitatory amino acid l-glutamate analog, causes neuronal death in the hippocampus; previous studies suggest that activated microglia and astrocytes actively participate in the pathogenesis of KA-induced hippocampal neurodegeneration. However, it is unclear whether ghrelin has neuroprotective effect in KA-induced hippocampal neurodegeneration. I.p. injection of KA produced typical neuronal cell death in the CA1 and CA3 pyramidal layers of the hippocampus, and the systemic administration of ghrelin significantly attenuated KA-induced neuronal cell death in these regions through the activation of GHSR1a. Ghrelin prevents KA-induced activation of microglia and astrocytes, and the expression of proinflammatory mediators tumor necrosis factor α, interleukin-1β, and cyclooxygenase-2. The inhibitory effect of ghrelin on the activation of microglia and astrocytes appears to be associated with the inhibition of matrix metalloproteinase-3 expression in damaged hippocampal neurons. Our data suggest that ghrelin has a therapeutic potential for suppressing KA-induced pathogenesis in the brain.

Free access

Chan-Juan Ma, Ai-Fang Nie, Zhi-Jian Zhang, Zhi-Guo Zhang, Li Du, Xiao-Ying Li and Guang Ning

Genipin, a compound derived from Gardenia jasminoides Ellis fruits, has been used over the years in traditional Chinese medicine to treat symptoms of type 2 diabetes. However, the molecular basis for its antidiabetic effect has not been fully revealed. In this study, we investigated the effects of genipin on glucose uptake and signaling pathways in C2C12 myotubes. Our study demonstrates that genipin stimulated glucose uptake in a time- and dose-dependent manner. The maximal effect was achieved at 2 h with a concentration of 10 μM. In myotubes, genipin promoted glucose transporter 4 (GLUT4) translocation to the cell surface, which was observed by analyzing their distribution in subcellular membrane fraction, and increased the phosphorylation of insulin receptor substrate-1 (IRS-1), AKT, and GSK3β. Meanwhile, genipin increased ATP levels, closed KATP channels, and then increased the concentration of calcium in the cytoplasm in C2C12 myotubes. Genipin-stimulated glucose uptake could be blocked by both the PI3-K inhibitor wortmannin and calcium chelator EGTA. Moreover, genipin increases the level of reactive oxygen species and ATP in C2C12 myotubes. These results suggest that genipin activates IRS-1, PI3-K, and downstream signaling pathway and increases concentrations of calcium, resulting in GLUT4 translocation and glucose uptake increase in C2C12 myotubes.