Search Results

You are looking at 1 - 10 of 11 items for

  • Author: BH Breier x
Clear All Modify Search
Free access

MH Vickers, BA Ikenasio and BH Breier

The discovery of a link between an adverse in utero environment and the propensity to develop metabolic and cardiovascular disease in adult life is one of the most important advances in epidemiological research of recent Years. Increasing experimental evidence suggests that alterations in the fetal environment may have long-term consequences for the development of metabolic disorders in adult life. This process has been termed 'fetal programming' and we have shown that undernutrition of the mother during gestation leads to development of the metabolic syndrome X during adult life. Striking metabolic similarities exist between syndrome X and untreated GH deficiency (GHD). In the present study we have investigated the effects of GH treatment on blood pressure and metabolic parameters. Virgin Wistar rats (age 75+/-5 days, n=20 per group) were time-mated and randomly assigned to receive food either ad libitum (AD) or 30% of AD intake (UN) throughout pregnancy. At weaning, male offspring were assigned to one of two diets (control or hypercaloric (30% fat)). Systolic blood pressure was measured at day 100 and following twice daily treatment with recombinant bovine GH for 21 days. GH treatment increased body weights in all treated animals but significantly reduced retroperitoneal and gonadal fat pad weights. Following GH treatment, systolic blood pressure was markedly decreased in all UN offspring. Saline-treated animals showed no change in systolic blood pressure over the treatment period. GH treatment increased heart-to-body weight ratio in all GH-treated animals. Our data demonstrated that GH treatment reduces hypertension and improves cardiovascular function in animals exposed to adverse environmental conditions during fetal or postnatal life.

Free access

MH Vickers, S Reddy, BA Ikenasio and BH Breier

Obesity and its related disorders are the most prevalent health problems in the Western world. Using the paradigm of fetal programming we developed a rodent model which displays the phenotype of obesity and metabolic disorders commonly observed in human populations. We apply maternal undernutrition throughout gestation, generating a nutrient-deprived intrauterine environment to induce fetal programming. Maternal undernutrition results in fetal growth retardation and in significantly decreased body weight at birth. Programmed offspring develop hyperphagia, obesity, hypertension, hyperleptinemia and hyperinsulinism during adult life and postnatal hypercaloric nutrition amplifies the metabolic abnormalities induced by fetal programming. The adipoinsular axis has been proposed as a primary candidate for linking the status of body fat mass to the function of the pancreatic beta-cells. We therefore investigated the relationship between circulating plasma concentrations of leptin and insulin and immunoreactivity in the endocrine pancreas for leptin and leptin receptor (OB-R) in genetically normal rats that were programmed to become obese during adult life. Virgin Wistar rats were time mated and randomly assigned to receive food either available ad libitum (AD group) or at 30% of the ad libitum available intake (UN group). Offspring from UN mothers were significantly smaller at birth than AD offspring (AD 6.13+/-0.04 g, UN 4.02+/-0.03 g, P<0.001). At weaning, offspring were assigned to one of two diets (a standard control diet or a hypercaloric diet consisting of 30% fat) for the remainder of the study. At the time of death (125 days of age), UN offspring had elevated (P<0.005) fasting plasma insulin (AD control 1.417+/-0.15 ng/ml, UN control 2.493+/-0.33 ng/ml, AD hypercaloric 1.70+/-0.17 ng/ml, UN hypercaloric 2.608+/-0.41 ng/ml) and leptin (AD control 8.8+/-1.6 ng/ml, UN control 14.32+/-1.9 ng/ml, AD hypercaloric 15.11+/-1.8 ng/ml, UN hypercaloric 30.18+/-5.3 ng/ml) concentrations, which were further increased (P<0.05) by postnatal hypercaloric nutrition. The elevated plasma insulin and leptin concentrations were paralleled by increased immunolabeling for leptin in the peripheral cells of the pancreatic islets. Dual immunofluorescence histochemistry for somatostatin and leptin revealed that leptin was co-localized in the pancreatic delta-cells. OB-R immunoreactivity was evenly distributed throughout the pancreatic islets and was not changed by programming nor hypercaloric nutrition. Our data suggest that reduced substrate supply during fetal development can trigger permanent dysregulation of the adipoinsular feedback system leading to hyperleptinemia, hyperinsulinism and compensatory leptin production by pancreatic delta-cells in a further attempt to reduce insulin hypersecretion in the progression to adipogenic diabetes.

Free access

MK Bauer, JE Harding, BH Breier and PD Gluckman

The role of GH in the regulation of fetal growth and metabolism in late gestation is not well defined. The aim of this study was to determine the effects of exogenous GH infusion on fetal growth and feto-placental metabolism in the normally growing late-gestation fetal sheep. Eleven fetuses received pulsatile GH infusion (3.5 mg/day) for 10 days while 12 control fetuses received vehicle. The GH infusion was given as a continuous infusion (2.5 mg/day) plus an additional pulsatile component (30 pulses equivalent to 1 mg/day) designed to mimic the natural pattern of GH secretion. Fetal GH infusion raised the circulating fetal concentrations of GH threefold, but did not change fetal concentrations of IGF-I, IGF-binding protein-3, insulin or ovine placental lactogen. GH-treated fetuses had blood urea concentrations 15% lower than controls (P<0.05) and glucose uptake 18% lower per kg fetal weig! ht (P=0.06). There were no other differences attributable to fetal GH infusion in feto-placental metabolism, placental function or placental blood flow. GH-treated fetuses were larger than controls at postmortem (weight+13%, P<0.01; girth+5%, P<0.01; crown-rump length+3%, P<0.05). However, there were no differences between groups in measures of fetal growth (increment in chest girth and hindlimb length). GH-treated fetuses had heavier mothers and when maternal weight was included as a covariate in the analysis, there was no significant difference between treatment groups that could be attributed to GH treatment. GH infusion to normal fetal sheep does not appear to have a significant effect on feto-placental metabolism or fetal growth.

Free access

E Ogawa, BH Breier, I Fujiwara and K Iinuma

Sexual dimorphism of somatic growth in rats appears to reflect differing actions of sex steroids. However, mechanisms of gonadal steroid effects on the somatotropic axis are incompletely understood. To evaluate whether GH is involved in the effects of long-term gonadal suppression on somatic growth in rats, a GnRH agonistic analogue (GnRHa) was administered to normal Sprague-Dawley rats (controls) and to a strain of rats with complete growth hormone deficiency (GHD; n=4-6 in each group). Subcutaneous injection of GnRHa (2 mg/kg) or saline were given within 48 h after birth and repeated every 3 weeks. GnRHa treatment significantly reduced serum gonadal steroid levels in rats of both sexes with small testes in males and impaired development of internal genitalia in females. GnRHa-treated control females became significantly heavier (P<0.01 ANOVA for repeated measures) than saline-treated rats beginning at 8 weeks. However, female GHD rats with GnRHa treatment did not differ in body weight from rats receiving saline. In male rats, GnRHa treatment did not change body weight in either control or GHD rats. Serum IGF-I concentrations did not differ between treatment groups in GHD and control rats of either sex. Hepatic GH binding was reduced significantly by GnRHa treatment in female control rats (P<0.01), but not in female GHD rats. These data suggest that sexual dimorphism in body size and its modulation by estrogens are independent of circulating IGF-I levels suggesting non-endocrine IGF-I-mediated mechanisms, and that GH-induced somatic growth is modulated by estrogens, but not androgens, in rats.

Free access

EC Jensen, BW Gallaher, BH Breier and JE Harding

Exposure of the fetus to excess maternal glucocorticoids has been postulated to alter fetal growth and development, and thus provide a possible mechanism for the link between impaired fetal growth and altered postnatal physiology. However, the effects of exposure to excess maternal glucocorticoids on fetal physiology and metabolism in utero have not been described. We therefore studied the effects of chronic maternal cortisol infusion on fetal growth, blood pressure, metabolism and endocrine status in chronically catheterised fetal sheep. We infused hydrocortisone (80 mg/day, n=6) or saline (n=8) for 10 days into the pregnant ewes beginning at 119 days of gestation. Maternal cortisol infusion reduced fetal growth rate by 30% (girth increment 2.9+/-0.3 vs 1.8+/-0.4 mm/day, P=0.03). Maternal cortisol infusion increased fetal heart weight by 15% relative to body weight and increased ventricular wall thickness by 30% in the left and 50% in the right ventricle. The weight of the spleen was reduced by 30% and placental weight reduced by 25%. Fetal blood pressure increased by approximately 10 mmHg (20%) during maternal cortisol infusion. Maternal cortisol infusion did not alter amino-nitrogen concentrations. However, maternal lactate concentrations increased by 80% and fetal lactate concentrations increased by 74% with maternal cortisol infusion, and both maternal and fetal urea concentrations increased by 40%. Circulating maternal IGF-binding protein (IGFBP)-3 levels had increased by 20% by the end of the maternal cortisol infusion. Fetal IGF-I concentrations decreased during cortisol infusion and fetal IGFBP-1 concentrations were negatively correlated with fetal weight (r=-0.76, P=0.02). We conclude that even a modest elevation of maternal cortisol levels affects fetal growth, cardiovascular function, metabolism and endocrine status which may have long-term consequences.

Free access

RM Kimble, BH Breier, PD Gluckman and JE Harding

Infants with upper gut atresia often have impaired intrauterine growth and gut function. IGF-I is important in fetal growth and is contained in amniotic fluid. We therefore wanted to test the hypothesis that IGF-I infused into fetal gut would reverse the effects of an upper gut obstruction on gut structure and growth in fetal sheep. At 90 days gestation fetuses (n=6 per group) underwent oesophageal ligation, followed by continuous infusion of IGF-I (1-8 microgram/day) or saline into the gut beyond the ligation until 137 days. Controls underwent sham ligation only. Oesophageal ligation tended to reduce fetal body and organ weights. IGF-I treatment prevented this reduction and increased body length and spleen weight above those of controls. The decrease in bowel wall thickness induced by oesophageal ligation was also prevented by IGF-I treatment. Amniotic fluid IGF-I concentrations did not change over gestation and were higher in the IGF-I treated group. No change in fetal plasma IGF-I concentrations were detectable. We conclude that enterally administered IGF-I may enhance fetal growth and gut development in utero and that IGF-I in amniotic fluid may play a physiological role in gut development in the fetus.

Free access

BW Gallaher, BH Breier, CL Keven, JE Harding and PD Gluckman

It has been demonstrated in several animal models that undernutrition in utero has significant long lasting effects on subsequent fetal and postnatal development. To address the hypothesis that the insulin-like growth factors (IGFs) may mediate such effects, our study examined whether a period of periconceptual maternal undernutrition could have a lasting influence on the IGF axis in the fetal sheep. Ewes were either allowed to feed ad libitum or kept undernourished from day 60 prior to mating until day 30 after conception, and then both groups were allowed to feed ad libitum. These groups were further divided at day 105 of gestation, either being fed ad libitum or undernourished until day 115 of gestation. Fetal and maternal blood samples were obtained at both day 105 and 115 of gestation. We describe the development of a specific homologous RIA to measure ovine IGF-binding protein-3 (IGFBP-3) in fetal and maternal sheep plasma. Fetal plasma IGFBP-3 and IGF-I concentrations were significantly (P<0.05) reduced at day 115 of gestation after maternal undernutrition. The fetal plasma IGFBP-2 levels were unchanged. The degree of reduction in fetal plasma IGFBP-3 and IGF-I between day 105 and 115 of gestation as a response to acute maternal undernutrition was significantly greater (P<0.05) in fetuses of mothers receiving low periconceptual nutrition. The response of maternal plasma IGFBP-3 and IGF-I to undernutrition did not depend on the level of periconceptual nutrition. Western blot data indicate that changes in either maternal or fetal plasma IGFBP-3 concentrations were not the result of increased proteolytic activity. These results suggest that exposure to maternal periconceptual undernutrition reprograms IGFBP-3 and IGF-I regulation in the developing sheep fetus, altering its response to undernutrition in late gestation.

Free access

HM Hammon, Y Zbinden, H Sauerwein, BH Breier, JW Blum and SS Donkin

Glucocorticoids inhibit postnatal growth and yet can stimulate the somatotropic axis around birth. The aim of the present study was to investigate the effects of dexamethasone on the somatotropic axis and on the responses of the insulin-like growth factor (IGF) system to growth hormone treatment in calves. Calves (n=24) were randomly divided into four groups. Group DX was injected with dexamethasone (30 micro g/kg body weight per day), group GH was injected with 500 mg slow-release bovine growth hormone at 14-day intervals, group GHDX was injected with dexamethasone and bovine growth hormone, and group CNTRL (serving as control) was injected with saline from day 3 to day 42 of life. Blood samples were taken on day 3 and blood and liver samples were obtained on days 7, 14, 28 and 42. Body weight increased in the CNTRL and GH groups up to the end of the study and in the DX and GHDX groups up to the fourth week. Dexamethasone treatment decreased (P<0.05) plasma IGF binding protein (IGFBP)-1 on days 7 and 14, but increased (P<0.05) plasma IGFBP-1, decreased (P<0.05) plasma IGF-I and IGFBP-3, and decreased hepatic mRNA for growth hormone receptor (GHR) and IGF-I on day 42. Growth hormone treatment increased (P<0.05) plasma growth hormone concentrations on days 7 and 14, tended to increase (P<0.1) plasma IGF-I concentrations on day 42, and increased (P<0.05) hepatic mRNA levels of GHR on day 14 and IGF-I mRNA levels on days 7 and 14. The combined dexamethasone and growth hormone treatment increased plasma growth hormone concentrations on day 7 and resulted in the highest plasma concentrations of IGF-I and IGFBP-3 (day 7 to day 28) as well as the greatest abundance of hepatic GHR (day 14) and IGF-I (days 7 and 14) mRNA. Plasma IGFBP-1 concentrations in the GHDX group behaved in a similar manner as in the DX group. In conclusion, the response of the somatotropic axis to growth hormone treatment could be greatly enhanced by dexamethasone treatment during the neonatal and early postnatal period, but body weight gain was not improved. Dexamethasone alone inhibited the somatotropic axis and postnatal growth after the first Month of life.

Free access

SM Woodall, BH Breier, BM Johnston, NS Bassett, R Barnard and PD Gluckman

Increasing evidence from human epidemiological studies suggests that poor growth before birth is associated with postnatal growth retardation and the development of cardiovascular disease in adulthood. We have shown previously that nutritional deprivation in the pregnant rat leads to intrauterine growth retardation (IUGR), postnatal growth failure, changes in the endocrine parameters of the somatotrophic axis, and to increased blood pressure in later life. In the present study, we investigated whether administration of insulin-like growth factor-I (IGF-I) or bovine growth hormone (GH) during pregnancy could prevent IUGR and/or alter long-term outcome. Dams from day 1 of pregnancy throughout gestation received a diet of ad libitum available food or a restricted dietary intake of 30% of ad libitum fed dams. From day 10 of gestation, dams were treated for 10 days with three times daily subcutaneous injections of saline (100 microl), IGF-I (2 micrograms/g body weight) or GH (2 micrograms/g body weight). Maternal weight gain was significantly increased (P<0.001) in ad libitum fed dams treated with GH, (98.9+/-4.73 g) compared with the IGF-I (80.5+/-2.17 g) and saline-treated (70.7+/-2.65 g) groups. There was a small increase in maternal weight gain (P<0.06) in 30% ad libitum fed dams following GH (16.3+/-2.47 g) and IGF-I (15.8+/-1.97 g) treatment compared with saline (9.2+/-1.96 g). Whole spleen, kidney and carcass weights were significantly (P<0.05) increased in ad libitum fed and 30% ad libitum fed dams with GH treatment. Circulating IGF-I was significantly increased (P<0.001) in ad libitum fed dams with both IGF-I (369.6+/-32.33 ng/ml) and GH (457.9+/-33.32 ng/ml) compared with saline treatment (211.7+/-14.02 ng/ml), and with GH (223.4+/-23.72 ng/ml) compared with saline treatment (112.0+/-7.33 ng/ml) in 30% ad libitum fed dams. Circulating GH binding protein (GHBP) levels were significantly reduced (P<0.05) in GH-treated (299.1+/-51.54 ng/ml) compared with saline-treated (503.9+/-62.43 ng/ml) ad libitum fed dams, but were not altered in 30% ad libitum fed dams. There was no significant effect of either IGF-I or GH treatment on fetal weight, placental weight, fetal organ weights or circulating IGF-I levels in both ad libitum fed and 30% ad libitum fed fetuses. Offspring of 30% ad libitum fed dams remained significantly growth retarded postnatally and showed elevated blood pressure in later life. The increased maternal weight gain following IGF-I or GH administration, without an effect on fetal and placental weights, suggests a modification in the mode of maternal nutrient repartitioning during mid to late pregnancy at the expense of the fetus.

Restricted access

P.D. Gluckman, P.C.H. Morel, G.R. Ambler, B.H. Breier, H.T. Blair and S.N. McCutcheon

ABSTRACT

Fetal growth is normally constrained by maternal factors. This constraint is demonstrated by the usual inverse linear relationship between litter size and mean fetal weight. Cross-breeding experiments between mice of lines selected for high or low plasma insulin-like growth factor (IGF-I) levels suggested that elevations in maternal IGF-I abolish (P <0.01) this constraining effect and reverse the usual positive relationship between fetal and placental size in late gestation. This was confirmed by treating mice and rats throughout pregnancy with IGF-I. In normal mice and in low IGF-I line mice treatment with IGF-I 10μg 8-hourly s.c. from day 1 to 19 of pregnancy) abolished maternal constraint whereas 0.9% (w/v) NaCl treatment did not. In Wistar rats osmotic pumps were implanted to deliver IGF-I (1μg/g body weight per day), bovine GH (bGH; 0.6μg/g body weight per day) or saline from day 1 to 19 of pregnancy. IGF-I therapy but not bGH or saline abolished (P < 0.01) maternal constraint and altered (P <0.01) the relationship between placental and fetal weight.

When high or low IGF-I line mice embryos were transplanted into a normal line of mice, the expected negative relationship (P <0.05) between mean fetal weight and litter size was maintained. However the embryos of the high line were heavier (P <0.05) than those from the low line irrespective of fetal number, suggesting a direct role for IGF-I in the regulation of fetal growth.

Thus both endogenous and exogenous elevations in maternal IGF-I indirectly promote fetal growth either by altering nutrient delivery to the placenta or by affecting placental function.