Search Results
You are looking at 1 - 1 of 1 items for
- Author: Chenxin Wang x
- Refine by access: All content x
Department of Physiology, Naval Medical University, Shanghai, China
Search for other papers by Chunchun Wei in
Google Scholar
PubMed
Search for other papers by Xianhua Ma in
Google Scholar
PubMed
Search for other papers by Kai Su in
Google Scholar
PubMed
Search for other papers by Shasha Qi in
Google Scholar
PubMed
Search for other papers by Yuangang Zhu in
Google Scholar
PubMed
Search for other papers by Junjian Lin in
Google Scholar
PubMed
Search for other papers by Chenxin Wang in
Google Scholar
PubMed
Search for other papers by Rui Yang in
Google Scholar
PubMed
Search for other papers by Xiaowei Chen in
Google Scholar
PubMed
Search for other papers by Weizhong Wang in
Google Scholar
PubMed
NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
Search for other papers by Weiping J Zhang in
Google Scholar
PubMed
Brown adipose tissue (BAT) plays a critical role in energy expenditure by uncoupling protein 1 (UCP1)-mediated thermogenesis. Carbohydrate response element-binding protein (ChREBP) is one of the key transcription factors regulating de novo lipogenesis (DNL). As a constitutively active form, ChREBP-β is expressed at extremely low levels. Up to date, its functional relevance in BAT remains unclear. In this study, we show that ChREBP-β inhibits BAT thermogenesis. BAT ChREBP-β mRNA levels were elevated upon cold exposure, which prompted us to generate a mouse model overexpressing ChREBP-β specifically in BAT using the Cre/LoxP approach. ChREBP-β overexpression led to a whitening phenotype of BAT at room temperature, as evidenced by increased lipid droplet size and decreased mitochondrion content. Moreover, BAT thermogenesis was inhibited upon acute cold exposure, and its metabolic remodeling induced by long-term cold adaptation was significantly impaired by ChREBP-β overexpression. Mechanistically, ChREBP-β overexpression downregulated expression of genes involved in mitochondrial biogenesis, autophagy, and respiration. Furthermore, thermogenic gene expression (e.g. Dio2, UCP1) was markedly inhibited in BAT by the overexpressed ChREBP-β. Put together, our work points to ChREBP-β as a negative regulator of thermogenesis in brown adipocytes.