Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Emma Rose McGlone x
  • Refine by access: All content x
Clear All Modify Search
Emma Rose McGlone Department of Surgery and Cancer, Imperial College London, London, UK

Search for other papers by Emma Rose McGlone in
Google Scholar
PubMed
Close
,
Stephen R Bloom Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK

Search for other papers by Stephen R Bloom in
Google Scholar
PubMed
Close
, and
Tricia M-M Tan Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK

Search for other papers by Tricia M-M Tan in
Google Scholar
PubMed
Close

Metabolic-associated steatotic liver disease (MASLD) is closely associated with obesity. MASLD affects over 1 billion adults globally but there are few treatment options available. Glucagon is a key metabolic regulator, and its actions include the reduction of liver fat through direct and indirect means. Chronic glucagon signalling deficiency is associated with hyperaminoacidaemia, hyperglucagonaemia and increased circulating levels of glucagon-like peptide 1 (GLP-1) and fibroblast growth factor 21 (FGF-21). Reduction in glucagon activity decreases hepatic amino acid and triglyceride catabolism; metabolic effects include improved glucose tolerance, increased plasma cholesterol and increased liver fat. Conversely, glucagon infusion in healthy volunteers leads to increased hepatic glucose output, decreased levels of plasma amino acids and increased urea production, decreased plasma cholesterol and increased energy expenditure. Patients with MASLD share many hormonal and metabolic characteristics with models of glucagon signalling deficiency, suggesting that they could be resistant to glucagon. Although there are few studies of the effects of glucagon infusion in patients with obesity and/or MASLD, there is some evidence that the expected effect of glucagon on amino acid catabolism may be attenuated. Taken together, this evidence supports the notion that glucagon resistance exists in patients with MASLD and may contribute to the pathogenesis of MASLD. Further studies are warranted to investigate the direct effects of glucagon on metabolism in patients with MASLD.

Open access
Affiong Ika Oqua Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK

Search for other papers by Affiong Ika Oqua in
Google Scholar
PubMed
Close
,
Yusman Manchanda Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK

Search for other papers by Yusman Manchanda in
Google Scholar
PubMed
Close
,
Emma Rose McGlone Department of Surgery and Cancer, Imperial College London, London, UK

Search for other papers by Emma Rose McGlone in
Google Scholar
PubMed
Close
,
Ben Jones Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK

Search for other papers by Ben Jones in
Google Scholar
PubMed
Close
,
Sarah Rouse Department of Life Sciences, Imperial College, London, UK

Search for other papers by Sarah Rouse in
Google Scholar
PubMed
Close
, and
Alejandra Tomas Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK

Search for other papers by Alejandra Tomas in
Google Scholar
PubMed
Close

The glucagon receptor family are typical class B1 G protein-coupled receptors (GPCRs) with important roles in metabolism, including the control of pancreas, brain, and liver function. As proteins with seven transmembrane domains, GPCRs are intimately in contact with lipid bilayers and therefore can be putatively regulated by interactions with their lipidic components, including cholesterol, sphingolipids, and other lipid species. Additionally, these receptors, as well as the agonists they bind to, can undergo lipid modifications, which can influence their binding capacity and/or elicit modified or biased signalling profiles. While the effect of lipids, and in particular cholesterol, has been widely studied for other GPCR classes, information about their role in regulating the glucagon receptor family is only beginning to emerge. Here we summarise our current knowledge on the effects of cholesterol modulation of glucagon receptor family signalling and trafficking profiles, as well as existing evidence for specific lipid–receptor binding and indirect effects of lipids via lipid modification of cognate agonists. Finally, we discuss the different methodologies that can be employed to study lipid–receptor interactions and summarise the importance of this area of investigation to increase our understanding of the biology of this family of metabolically relevant receptors.

Open access