Search Results
You are looking at 1 - 2 of 2 items for
- Author: I Villa x
- Refine by access: All content x
Endocrine Unit, Scientific Institute San Raffaele, Via Olgettina, 60, 20132 Milano, Italy
Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Milan, Italy
Search for other papers by E Mrak in
Google Scholar
PubMed
Endocrine Unit, Scientific Institute San Raffaele, Via Olgettina, 60, 20132 Milano, Italy
Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Milan, Italy
Search for other papers by I Villa in
Google Scholar
PubMed
Endocrine Unit, Scientific Institute San Raffaele, Via Olgettina, 60, 20132 Milano, Italy
Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Milan, Italy
Search for other papers by R Lanzi in
Google Scholar
PubMed
Endocrine Unit, Scientific Institute San Raffaele, Via Olgettina, 60, 20132 Milano, Italy
Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Milan, Italy
Search for other papers by M Losa in
Google Scholar
PubMed
Endocrine Unit, Scientific Institute San Raffaele, Via Olgettina, 60, 20132 Milano, Italy
Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Milan, Italy
Search for other papers by F Guidobono in
Google Scholar
PubMed
Endocrine Unit, Scientific Institute San Raffaele, Via Olgettina, 60, 20132 Milano, Italy
Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Milan, Italy
Search for other papers by A Rubinacci in
Google Scholar
PubMed
It is presently thought that osteoprotegerin (OPG) is a cytokine involved in the regulation of osteoblast/osteoclast crosstalk and maintenance of bone mass. Recent studies showed that GH replacement therapy in GH-deficient patients was able to induce a significant increase of OPG in the plasma, as well as in the cortical and the trabecular bone. In order to determine whether GH could directly modulate OPG secretion, the effect of GH on human osteoblast-like cells (hOB) in primary culture was studied. After detecting the presence of the mRNA for the GH receptor (GHR) by RT-PCR, hOB were exposed to increasing concentrations of GH, from 0.1 to 25 ng/ml, for 24 h. The results showed that GH exposure was able to stimulate OPG secretion in a concentration-dependent manner. In addition, the OPG mRNA levels were increased, indicating that the hormone has a stimulatory effect on gene expression. The stimulatory effect on OPG expression and production was prevented by exposing the cells to tyrphostin AG490 (10 μM), an inhibitor of Janus kinase 2, which is one of the kinases involved in the intracellular pathway activated by the binding of GH to its receptor. Similar results were obtained when the cells were exposed to a receptor antagonist of GH, pegvisomant at 50 nM. GH exposure neither induced an increase in IGF-I expression nor secretion in hOB. These results suggest that the stimulation of OPG production induced by GH in hOB is specific and receptor mediated and further support the view that GH is able to modulate bone remodeling by directly influencing osteoblast–osteoclast crosstalk.
Search for other papers by A Pecile in
Google Scholar
PubMed
Search for other papers by C Netti in
Google Scholar
PubMed
Search for other papers by V Sibilia in
Google Scholar
PubMed
Search for other papers by I Villa in
Google Scholar
PubMed
Search for other papers by G Calori in
Google Scholar
PubMed
Search for other papers by R Tenni in
Google Scholar
PubMed
Search for other papers by M Coluzzi in
Google Scholar
PubMed
Search for other papers by G L Moro in
Google Scholar
PubMed
Search for other papers by A Rubinacci in
Google Scholar
PubMed
Abstract
This study was undertaken to assess the sensitivity of hydroxylysylpyridinoline (HP), lysylpyridinoline (LP), galactosylhydroxylysine (GHyl) and glucosylgalactosylhydroxylysine (GGHyl) to monitor bone response to estrogen deficiency and replacement by comparing their excretory patterns in ovariectomized aged (11–14 months old) rats. The ovariectomized (OVX) rats were randomized into two groups: (1) OVX plus vehicle; (2) OVX plus 17β-estradiol (17-βE, 10 μg/kg, s.c., 4 days/week). Treatment with 17-βE started immediately after OVX and continued for 60 days. The collagen catabolites were measured in urine for 1 month before OVX and thereafter for 60 days. In temporal coincidence with urine collection, bone area and bone mineral density (BMD) of lumbar vertebrae, femoral diaphysis and distal metaphysis were measured by dual-energy X-ray absorptiometry. In the untreated rats, BMD of the femoral metaphysis and lumbar vertebrae decreased significantly and the urinary excretion of LP, HP, GHyl and GGHyl increased with different patterns. In the treated rats, 17-βE replacement prevented the increment in LP excretion, partially prevented the increase in HP excretion, but had no effect on the excretion of GHyl and GGHyl. In conclusion pyridinolines and glycosides have different sensitivities to the bone response to OVX. Glycoside excretion after OVX also reflects metabolic processes not strictly related to bone loss and, in contrast with LP, is not sensitive to estrogen replacement.
Journal of Endocrinology (1996) 150, 383–390