Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Jean-Louis Charli x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Patricia Joseph-Bravo, Lorraine Jaimes-Hoy, and Jean-Louis Charli

Free access

Patricia Joseph-Bravo, Lorraine Jaimes-Hoy, and Jean-Louis Charli

Energy homeostasis relies on a concerted response of the nervous and endocrine systems to signals evoked by intake, storage, and expenditure of fuels. Glucocorticoids (GCs) and thyroid hormones are involved in meeting immediate energy demands, thus placing the hypothalamo–pituitary–thyroid (HPT) and hypothalamo–pituitary–adrenal axes at a central interface. This review describes the mode of regulation of hypophysiotropic TRHergic neurons and the evidence supporting the concept that they act as metabolic integrators. Emphasis has been be placed on i) the effects of GCs on the modulation of transcription of Trh in vivo and in vitro, ii) the physiological and molecular mechanisms by which acute or chronic situations of stress and energy demands affect the activity of TRHergic neurons and the HPT axis, and iii) the less explored role of non-hypophysiotropic hypothalamic TRH neurons. The partial evidence gathered so far is indicative of a contrasting involvement of distinct TRH cell types, manifested through variability in cellular phenotype and physiology, including rapid responses to energy demands for thermogenesis or physical activity and nutritional status that may be modified according to stress history.

Free access

Patricia Joseph-Bravo, Lorraine Jaimes-Hoy, Rosa-María Uribe, and Jean-Louis Charli

This review presents the findings that led to the discovery of TRH and the understanding of the central mechanisms that control hypothalamus–pituitary–thyroid axis (HPT) activity. The earliest studies on thyroid physiology are now dated a century ago when basal metabolic rate was associated with thyroid status. It took over 50 years to identify the key elements involved in the HPT axis. Thyroid hormones (TH: T4 and T3) were characterized first, followed by the semi-purification of TSH whose later characterization paralleled that of TRH. Studies on the effects of TH became possible with the availability of synthetic hormones. DNA recombinant techniques permitted the identification of all the elements involved in the HPT axis, including their mode of regulation. Hypophysiotropic TRH neurons, which control the pituitary–thyroid axis, were identified among other hypothalamic neurons which express TRH. Three different deiodinases were recognized in various tissues, as well as their involvement in cell-specific modulation of T3 concentration. The role of tanycytes in setting TRH levels due to the activity of deiodinase type 2 and the TRH-degrading ectoenzyme was unraveled. TH-feedback effects occur at different levels, including TRH and TSH synthesis and release, deiodinase activity, pituitary TRH-receptor and TRH degradation. The activity of TRH neurons is regulated by nutritional status through neurons of the arcuate nucleus, which sense metabolic signals such as circulating leptin levels. Trh expression and the HPT axis are activated by energy demanding situations, such as cold and exercise, whereas it is inhibited by negative energy balance situations such as fasting, inflammation or chronic stress. New approaches are being used to understand the activity of TRHergic neurons within metabolic circuits.

Free access

Patricia Joseph-Bravo, Lorraine Jaimes-Hoy, Rosa-María Uribe, and Jean-Louis Charli