Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Nathalie Marissal-Arvy x
  • Refine by access: All content x
Clear All Modify Search
Nathalie Marissal-Arvy INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Nathalie Marissal-Arvy in
Google Scholar
PubMed
Close
,
Rachel Hamiani INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Rachel Hamiani in
Google Scholar
PubMed
Close
,
Emmanuel Richard INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Emmanuel Richard in
Google Scholar
PubMed
Close
,
Marie-Pierre Moisan INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Marie-Pierre Moisan in
Google Scholar
PubMed
Close
, and
Véronique Pallet INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France
INRA, Laboratory of Nutrition and Integrative Neurobiology, INSERM, Nutrition and Integrative Neurobiology, UMR1286, Université de Bordeaux 2, 146, rue Léo Saignat, 33076 Bordeaux Cedex, France

Search for other papers by Véronique Pallet in
Google Scholar
PubMed
Close

The aim of this study was to explore the involvement of retinoids in the hypoactivity and hyporeactivity to stress of the hypothalamic–pituitary–adrenal (HPA) axis in LOU/C rats. We measured the effects of vitamin A deficiency administered or not with retinoic acid (RA) on plasma corticosterone in standard conditions and in response to restraint stress and on hypothalamic and hippocampal expression of corticosteroid receptors, corticotropin-releasing hormone and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in LOU/C rats. Interestingly, under control conditions, we measured a higher plasma concentration of retinol in LOU/C than in Wistar rats, which could contribute to the lower basal activity of the HPA axis in LOU/C rats. Vitamin A deficiency induced an increased HPA axis activity in LOU/C rats, normalized by RA administration. Compared with LOU/C control rats, vitamin A-deficient rats showed a delayed and heightened corticosterone response to restraint stress. The expression of corticosteroid receptors was strongly decreased by vitamin A deficiency in the hippocampus, which could contribute to a less efficient feedback by corticosterone on HPA axis tone. The expression of 11β-HSD1 was increased by vitamin A deficiency in the hypothalamus (+62.5%) as in the hippocampus (+104.7%), which could lead to a higher production of corticosterone locally and contribute to alteration of the hippocampus. RA supplementation treatment restored corticosterone concentrations and 11β-HSD1 expression to control levels. The high vitamin A status of LOU/C rats could contribute to their low HPA axis activity/reactivity and to a protective effect against 11β-HSD1-mediated deleterious action on cognitive performances during ageing.

Free access
Nathalie Marissal-Arvy
Search for other papers by Nathalie Marissal-Arvy in
Google Scholar
PubMed
Close
,
Alexandra Gaumont
Search for other papers by Alexandra Gaumont in
Google Scholar
PubMed
Close
,
Allan Langlois
Search for other papers by Allan Langlois in
Google Scholar
PubMed
Close
,
Fabrice Dabertrand
Search for other papers by Fabrice Dabertrand in
Google Scholar
PubMed
Close
,
Marion Bouchecareilh Laboratoire PsyNuGen, Laboratoire des Régulations Neuroendocriniennes, INRA UMR1286, CNRS UMR5226, Université de Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux, France

Search for other papers by Marion Bouchecareilh in
Google Scholar
PubMed
Close
,
Claudine Tridon
Search for other papers by Claudine Tridon in
Google Scholar
PubMed
Close
, and
Pierre Mormede
Search for other papers by Pierre Mormede in
Google Scholar
PubMed
Close

Our aim was to explore the nutritional consequences of functional variations in the hypothalamic–pituitary–adrenocortical (HPA) axis in rats. We first aimed to compare the HPA axis activity and reactivity to stress between Fischer 344 (F344) and LOU/C (LOU) strains that differ in food behavior and metabolism. When compared with F344 rats, LOU rats showed lower corticosterone (Cort) levels across the circadian cycle and after restraint stress. Then, we compared the effects of adrenalectomized (ADX) and Cort substitution after ADX on food intake, body weight gain, body composition, and biochemical parameters related to metabolism and HPA axis function between 1) the F344 rat strain, a model of HPA axis hyperactivity and hyperreactivity to stress, and characterized by a large fat mass; 2) the LOU strain, shown to exhibit hypoactive/hyporeactive HPA axis, reduced fat mass, and resistance to diet-induced obesity; and 3) the Lewis (LEW) strain, a third condition of fat deposition (high) related to HPA axis function (low activity/reactivity). The F344 and LEW strains exhibited classical responses to ADX and Cort. On the contrary, LOU rats showed an apparent insensitivity to ADX. Despite the highest effects of Cort related to glucocorticoid receptor (on thymus weight, corticotropin-releasing factor, or corticosteroid-binding globulin), the LOU strain was insensitive to Cort effects on body weight, liver, and abdominal fat mass. These characteristics could be involved in the leanness, insensitivity to diet-induced obesity, and healthy aging in LOU. Our study shows the relevance of comparing the F344, LOU, and LEW strains to cover the complexity of interactions between metabolism and HPA axis function.

Free access