Search Results

You are looking at 1 - 2 of 2 items for

  • Author: P Galle x
  • Refine by access: All content x
Clear All Modify Search
P. C. Galle
Search for other papers by P. C. Galle in
Google Scholar
PubMed
Close
,
A. Ulloa-Aguirre
Search for other papers by A. Ulloa-Aguirre in
Google Scholar
PubMed
Close
, and
S. C. Chappel
Search for other papers by S. C. Chappel in
Google Scholar
PubMed
Close

Anterior pituitary glands were removed from ovariectomized hamsters after specific endocrine treatments. The presence and relative proportions of the multiple species of FSH present within them were assessed by radioimmunoassay after separation by chromatofocusing. This technique is superior to polyacrylamide gel-isoelectric focusing, as it can accommodate a greater sample volume and has increased resolution. Endocrine conditions which decreased hypothalamic LH releasing hormone (LHRH) release or the sensitivity of the pituitary gland to that neurohormone (phenobarbitone treatment or short-term oestradiol exposure) caused an increase in the relative proportions of the more acidic forms (isoelectric points (pI) 5·1–3·8) of pituitary FSH and a concomitant reduction in the more basic (pI values 6·0–5·3) forms of FSH. During times of increased pituitary LHRH exposure (immediately before the oestradiol-induced gonadotrophin surge or after injection of synthetic LHRH) an increase was observed in the relative proportion of the more basic forms of pituitary FSH. Treatment of ovariectomized hamsters with an inhibincontaining preparation reduced serum FSH concentrations as well as the relative proportion of the more basic forms of pituitary FSH. We have previously shown that the more basic forms of FSH exhibit more biological activity in an in-vitro test system. The present studies suggest that the existing hormonal milieu, in particular LHRH and oestradiol, influences the types of FSH produced and (presumably) secreted. Thus, through hormonal interactions, the pituitary gland regulates not only the absolute amount but also the potency of the FSH signal to the ovaries.

Restricted access
K Fosgerau Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by K Fosgerau in
Google Scholar
PubMed
Close
,
P Galle Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by P Galle in
Google Scholar
PubMed
Close
,
T Hansen Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by T Hansen in
Google Scholar
PubMed
Close
,
A Albrechtsen Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by A Albrechtsen in
Google Scholar
PubMed
Close
,
C de Lemos Rieper Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark
Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by C de Lemos Rieper in
Google Scholar
PubMed
Close
,
B Klarlund Pedersen Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by B Klarlund Pedersen in
Google Scholar
PubMed
Close
,
L Kongskov Larsen Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by L Kongskov Larsen in
Google Scholar
PubMed
Close
,
A Randrup Thomsen Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by A Randrup Thomsen in
Google Scholar
PubMed
Close
,
O Pedersen Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark
Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by O Pedersen in
Google Scholar
PubMed
Close
,
M Bagge Hansen Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by M Bagge Hansen in
Google Scholar
PubMed
Close
, and
A Steensberg Rheoscience, Department of Infectious Diseases, Department of Clinical Immunology, Department of International Health, Steno Diabetes Center, Faculty of Health Sciences, Department of In Vivo Pharmacology, 2730 Herlev, Denmark

Search for other papers by A Steensberg in
Google Scholar
PubMed
Close

Abstract

Interleukin-6 (IL6) is critically involved in inflammation and metabolism. About 1% of people produce IL6 autoantibodies (aAb-IL6) that impair IL6 signaling in vivo. We tested the hypothesis that the prevalence of such aAb-IL6 is increased in type 2 diabetic patients and that aAb-IL6 plays a direct role in causing hyperglycemia. In humans, the prevalence of circulating high-affinity neutralizing aAb-IL6 was 2.5% in the type 2 diabetic patients and 1% in the controls (odds ratio 2.5, 95% confidence interval 1.2–4.9, P=0.01). To test for the role of aAb-IL6 in causing hyperglycemia, such aAb-IL6 were induced in mice by a validated vaccination procedure. Mice with plasma levels of aAb-IL6 similar to the 2.5% type 2 diabetic patients developed obesity and impaired glucose tolerance (area under the curve (AUC) glucose, 2056±62 vs 1793±62, P=0.05) as compared with sham-vaccinated mice, when challenged with a high-fat diet. Mice with very high plasma levels of aAb-IL6 developed elevated fasting plasma glucose (mM, 4.8±0.4 vs 3.3±0.1, P<0.001) and impaired glucose tolerance (AUC glucose, 1340±38 vs 916±25, P<0.001) as compared with sham-control mice on normal chow. In conclusion, the prevalence of plasma aAb-IL6 at levels known to impair IL6 signaling in vivo is increased 2.5-fold in people with type 2 diabetes. In mice, matching levels of aAb-IL6 cause obesity and hyperglycemia. These data suggest that a small subset of type 2 diabetes may in part evolve from an autoimmune attack against IL6.

Free access