Lepidium meyenii (Maca) is a Peruvian hypocotyl that grows exclusively between 4000 and 4500 m in the central Andes. Maca is traditionally employed in the Andean region for its supposed aphrodisiac and/or fertility-enhancing properties. This study was a 12-week double-blind, placebo-controlled, randomized, parallel trial in which active treatment with different doses of Maca Gelatinizada was compared with a placebo. The study aimed to test the hypothesis that Maca has no effect on serum reproductive hormone levels in apparently healthy men when administered in doses used for aphrodisiac and/or fertility-enhancing properties. Men aged between 21 and 56 Years received 1500 mg or 3000 mg Maca. Serum levels of luteinizing hormone, follicle-stimulating hormone, prolactin, 17-alpha hydroxyprogesterone, testosterone and 17-beta estradiol were measured before and at 2, 4, 8 and 12 weeks of treatment with placebo or Maca (1.5 g or 3.0 g per day). Data showed that compared with placebo Maca had no effect on any of the hormones studied nor did the hormones show any changes over time. Multiple regression analysis showed that serum testosterone levels were not affected by treatment with Maca at any of the times studied (P, not significant). In conclusion, treatment with Maca does not affect serum reproductive hormone levels.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: A Cordova x
- Refine by Access: All content x
GF Gonzales, A Cordova, K Vega, A Chung, A Villena, and C Gonez
GF Gonzales, M Gasco, A Cordova, A Chung, J Rubio, and L Villegas
Lepidium meyenii (Maca) is a Peruvian hypocotyl that grows exclusively between 4000 and 4500 m in the central Andes. Maca is traditionally employed in the Andean region for its supposed fertility-enhancing properties.The aim of this study was to test the hypothesis that Maca can prevent high altitude-induced testicular disturbances. Adult male rats were exposed for 21 days to an altitude of 4340 m and treated with vehicle or aqueous extract of Maca (666.6 mg/day). The lengths of the stages of the seminiferous epithelium and epididymal sperm counts were obtained at 0, 7, 14 and 21 days of exposure. The stages of the seminiferous tubules were assessed by transillumination. A dose-response study was also performed at sea level to determine the effect of Maca given to male rats at doses of 0, 6.6, 66.6 and 666.6 mg/day for 7 days on body weight, seminiferous tubule stages and epididymal sperm count. The length of stage VIII and the epididymal sperm count were increased in a dose-dependent manner in Maca-treated rats but treatment reduced the length of stage I. At the highest dose, sperm count increased 1.58 times, the length of stage VIII increased 2.4 times and the length of stage I was reduced 0.48 times compared with the value at dose 0. Exposure to high altitude resulted in a reduction in epididymal sperm count after 7 days and lower values were maintained up to 21 days. Altitude reduced spermiation (stage VIII) to half and the onset of spermatogenesis (stages IX-XI) to a quarter on days 7 and 14 but treatment with Maca (666.6 mg/day) prevented these changes. Data on transillumination and epididymal sperm count in the Maca-treated group exposed to high altitude were similar to those obtained at sea level. Maca increased the sperm count on day 21 of exposure to high altitude to values similar (1095.25 +/- 20.41x10(6) sperm, means +/- S.E.M.) to those obtained in the Maca-treated group at sea level (1132.30 +/- 172.95x10(6) sperm). Furthermore, in the Maca-treated group exposed for 21 days to high altitude, epididymal sperm count was higher than in the non-treated group at sea level (690.49 +/- 43.67x10(6) sperm). In conclusion, treatment of rats with Maca at high altitude prevented high altitude-induced spermatogenic disruption.