Search Results
You are looking at 1 - 10 of 16 items for
- Author: A I Martín x
- Refine by access: All content x
Search for other papers by A I Martín in
Google Scholar
PubMed
Search for other papers by J Fernández-Ruiz in
Google Scholar
PubMed
Search for other papers by A López-Calderón in
Google Scholar
PubMed
Abstract
Acute stress is known to increase LH secretion and the release of central norepinephrine (NE) in intact rats. Studies were performed to analyse the role of catecholamines in acute stress-induced LH release in male rats. Injection of α-methyl-p-tyrosine (αMPT) and diethyldithiocarbamate (DDC), catecholamine synthesis inhibitors, significantly decreased both hypothalamic concentration of NE and serum LH. Restraint for 30 min evoked an increase in serum LH in saline-treated rats, whereas αMPT and DDC administration blocked the stress-induced LH release. The effects of α1-, α2- and β-adrenoreceptor antagonists on the LH response to restraint stress were also studied. Propranolol treatment did not modify serum LH in either unstressed or stressed rats. The two α-adrenergic receptor antagonists prazosin and yohimbine prevented the restraint-induced LH release; however, prazosin but not yohimbine significantly decreased the serum concentration of LH in unstressed rats. These data suggest that the acute stress-induced increase in LH secretion is mediated through the activation of α2-adrenergic receptors.
Journal of Endocrinology (1995) 144, 511–515
Search for other papers by A. E. ARGÜELLES in
Google Scholar
PubMed
Search for other papers by H. MARTÍN in
Google Scholar
PubMed
Search for other papers by M. CHEKHERDEMIAN in
Google Scholar
PubMed
Search for other papers by I. MOLOCZNIK in
Google Scholar
PubMed
Metyrapone administered orally (Liddle, Estep, Kendall, Williams & Townes, 1959) or intravenously (Gold, Di Raimondo & Forsham, 1960) has been widely used as a test of corticotrophin (ACTH) reserve. Although both modes of administration are thought to be equally satisfactory (Gold, Kent & Forsham, 1961) a comparison in the same subjects has not been reported.
The subjects (10 men and 4 women) received first an infusion of 30 mg. metyrapone/kg. body weight (Metopirone, Ciba) in 0·9 % NaCl solution at the rate of 125 ml./hr. for 4 hr. starting between 8.00 and 9.00 hr. Urine collections were started at the same time. The oral test was performed 5–7 days later, eight doses of two 250 mg. capsules being taken every 2–3 hr. Total 17-oxogenic steroid (17-OGS) excretion was estimated by the method of Few (1961).
The results are shown in Table 1. After i.v. administration of metyrapone the rise in
Search for other papers by A I Martín in
Google Scholar
PubMed
Search for other papers by E Castillero in
Google Scholar
PubMed
Search for other papers by M Granado in
Google Scholar
PubMed
Search for other papers by M López-Menduiña in
Google Scholar
PubMed
Search for other papers by M A Villanúa in
Google Scholar
PubMed
Search for other papers by A López-Calderón in
Google Scholar
PubMed
Adjuvant-induced arthritis is a model of rheumatoid arthritis that induces cachexia. In other cachectic situations, there is an increase in lipolysis resulting in a loss of adipose tissue mass. The aim of this work was to analyse the effect of chronic arthritis, induced by adjuvant injection, on white adipose tissue (WAT). For this purpose, rats were killed 10 days after adjuvant injection, when the first external symptoms appeared, on days 15 and 22 when the external signs of the illness reach their severest level. As arthritis decreases food intake, a pair-fed group was also included. Serum concentrations of insulin, leptin, adiponectin, glycerol and nitrites, as well as gene expression of leptin, adiponectin, hormone-sensitive lipase (HSL), fatty acid synthase (FAS), tumour necrosis factor α and zinc-α2-glycoprotein (ZAG) were determined. Arthritis decreased food intake between days 5 and 16, but not during the last 5 days of the experiment. There was a marked decrease in relative adipose tissue weight and in serum leptin and adiponectin as well as in their gene expression in WAT in arthritic rats. Arthritis decreased the gene expression of FAS in the WAT. However, none of these effects was found in pair-fed rats. Arthritis did not increase lipolysis, since arthritic rats have lower serum concentrations of glycerol, HSL mRNA in WAT, as well as liver ZAG mRNA than the pair-fed or control rats. These data suggest that in chronic arthritis the decrease in white adipose mass is secondary to a reduced adipose lipogenesis, and this effect is not mainly due to the decrease in food intake.
Search for other papers by A I Martín in
Google Scholar
PubMed
Search for other papers by M López-Menduiña in
Google Scholar
PubMed
Search for other papers by E Castillero in
Google Scholar
PubMed
Search for other papers by M Granado in
Google Scholar
PubMed
Search for other papers by M A Villanúa in
Google Scholar
PubMed
Search for other papers by A López-Calderón in
Google Scholar
PubMed
The aim of this work was to analyse the role of cyclooxygenase-2 (Ptgs2) in endotoxin-induced decrease in Igf1 and Igf binding protein-3 (Igfbp3). For this purpose, male Wistar rats were injected with lipolysaccharide (LPS) and/or the Ptgs2 inhibitor meloxicam. LPS induced a significant decrease (P<0.01) in serum concentrations of Igf1 and Igfbp3 and their mRNAs in the liver. Meloxicam administration prevented the inhibitory effect of LPS injection on serum Igf1 and its liver mRNA. By contrast, meloxicam administration was unable to modify the inhibitory effect of LPS on Igfbp3. LPS injection also induced a decrease in GH receptor (Ghr) mRNA in the liver, and meloxicam attenuated this effect. In order to elucidate a direct action of the Ptgs2 inhibitor on the liver cells, the effect of LPS and/or meloxicam was studied in primary cultures of hepatocytes with non-parenchymal cells. LPS decreased Igf1 and Ghr but not Igfbp3 gene expression in liver cells in culture. Meloxicam administration attenuated the inhibitory effect of LPS on Igf1 mRNA, whereas it did not modify the decrease in Ghr mRNA after LPS. The effect of meloxicam on the LPS response does not seem to be mediated by changes in nitric oxide or tumour necrosis factor (Tnf) production, since meloxicam did not modify the stimulatory effect of LPS on nitric oxide or Tnfα gene expression both in vivo and in vitro. All these data suggest that LPS-induced Ptgs2 activation decreases Igf1 gene expression in liver cells.
Search for other papers by M Granado in
Google Scholar
PubMed
Search for other papers by A I Martín in
Google Scholar
PubMed
Search for other papers by T Priego in
Google Scholar
PubMed
Search for other papers by A López-Calderón in
Google Scholar
PubMed
Search for other papers by M A Villanúa in
Google Scholar
PubMed
Chronic inflammation is associated with a decrease in body weight and cachexia, which is characterized by anorexia and skeletal muscle wasting. The expression of atrogens muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx) are increased in muscle atrophy and it is known that tumour necrosis factor (TNF) regulates skeletal muscle loss through TNF receptor p55 (TNFRI). The aim of this study was to examine the effect of polyethylene glycol linked to soluble TNFRI (PEG-sTNFRI) on gene expression of the atrogens MuRF-1 and MAFbx in skeletal muscle of arthritic rats. Rats were injected with Freund’s adjuvant and, 15 days later, arthritic and control rats were injected daily with PEG-sTNFRI (1 mg/kg, s.c.) or saline for 8 days. Arthritis decreased body weight gain, the weight of skeletal muscle and adipose mass. PEG-sTNFRI administration increased body weight gain and adipose mass of arthritic rats; however, it did not modify the skeletal muscle weight. The gene expression of TNF-α, MuRF1 and MAFbx, IGF-I and IGFBP-5 were increased in the skeletal muscle of arthritic rats, and the administration of PEG-sTNFRI did not modify these parameters. These data suggest that the anti-TNF agent PEG-sTNFRI did not prevent the increase in E3 ubiquitin-ligating enzymes, MuRF1 and MAFbx, gene expression in the skeletal muscle of arthritic rats.
Search for other papers by M Granado in
Google Scholar
PubMed
Search for other papers by A I Martín in
Google Scholar
PubMed
Search for other papers by T Priego in
Google Scholar
PubMed
Search for other papers by M A Villanúa in
Google Scholar
PubMed
Search for other papers by A López-Calderón in
Google Scholar
PubMed
Gram-negative bacterial infection or treatment of animals with bacterial lipopolysaccharide (LPS) induces a catabolic state with proteolysis, liver injury and an inhibition of the insulin-like growth factor-I (IGF-I) system. The purpose of this work was to elucidate the role of Kupffer cells in LPS-induced inhibition of the IGF-I/IGF-binding protein-3 (IGFBP-3) system. Adult male Wistar rats were either pretreated with the Kupffer cell inhibitor gadolinium chloride (10 mg/kg, i.v., 24 h prior to LPS exposure) or saline vehicle. Rats received two i.p. injections of 1 mg/kg LPS (at 17:30 and 08:30 h the following day) and were killed 4 h after the second injection. LPS administration induced a significant decrease in body weight and in serum concentrations of IGF-I and IGFBP-3 (P < 0.01), as well as in their gene expression in the liver. LPS-injected rats had increased serum concentrations of ACTH, corticosterone (P < 0.05), tumour necrosis factor-α (TNF-α) and nitrites (P < 0.01). Pretreatment of the animals with gadolinium chloride blocked the inhibitory effect of LPS on body weight, and on serum concentrations of IGF-I, IGFBP-3 and nitrites, as well as growth hormone receptor (GHR), IGF-I and IGFBP-3 gene expression in the liver. In contrast, gadolinium chloride administration did not modify the stimulatory effect of LPS on serum concentrations of ACTH, corticosterone and TNF-α. These results suggest that Kupffer cells are important mediators in the inhibitory effect of LPS on GHR, IGF-I and IGFBP-3 gene expression in the liver, leading to a decrease in serum concentrations of IGF-I and IGFBP-3.
Search for other papers by I. R. McDonald in
Google Scholar
PubMed
Search for other papers by A. K. Lee in
Google Scholar
PubMed
Search for other papers by K. A. Than in
Google Scholar
PubMed
Search for other papers by R. W. Martin in
Google Scholar
PubMed
ABSTRACT
In an investigation of the factors leading to the increase in the concentration of plasma free glucocorticoid, which results in immunosuppression and death after mating of all males in natural populations of a small shrew-like marsupial, the dusky antechinus (Antechinus swainsonii), the integrity of the glucocorticoid feedback control of the concentration of plasma cortisol was examined by use of dexamethasone-suppression tests.
Injection of 0·2 mg dexamethasone/kg i.m. caused a marked fall in the concentration of plasma cortisol 17 h later, approximately 2 months and 2 weeks before the annual mating period in mid-July. However, the same dose had no significant effect on the increased concentration of plasma cortisol characteristic of the mid- to late July mating period.
Injection of 100 i.u. ACTH/kg i.m. caused a significant increase in the concentration of plasma cortisol 6–7 h later on all occasions, indicating that the responsiveness of the adrenal cortex to ACTH did not change. Pretreatment with dexamethasone had no effect on the ACTH-stimulated cortisol concentration, ruling out a possible direct effect of dexamethasone on adrenocortical secretion in this species. Dexamethasone also reduced the concentration of plasma testosterone when the level was low, before the mating period, but not when the level was high, at the beginning of the mating period.
It is concluded that, in association with a rapid increase in the concentration of plasma testosterone, an increase in aggression and intense mating activity, glucocorticoid feedback control of ACTH secretion is impaired. This contributes to the rapid and sustained rise in the concentration of plasma free cortisol to immunosuppressive levels.
J. Endocr. (1986) 108, 63–68
Search for other papers by A. S. McNEILLY in
Google Scholar
PubMed
Search for other papers by M. J. MARTIN in
Google Scholar
PubMed
Search for other papers by T. CHARD in
Google Scholar
PubMed
Search for other papers by I. C. HART in
Google Scholar
PubMed
Neurophysin and the octapeptide hormones oxytocin and vasopressin are synthesized in the hypothalamus and stored in the posterior lobe of the pituitary gland. It has recently been shown that the release of both oxytocin and vasopressin or of vasopressin alone, in response to potent stimuli, is accompanied by a simultaneous release of neurophysin into the circulation (Burton, Forsling & Martin, 1971; McNeilly, Legros & Forsling, 1972). However, it has yet to be shown that neurophysin can be released at the same time as a specific release of oxytocin. This situation occurs in animals during both parturition (Folley & Knaggs, 1965) and lactation (Folley & Knaggs, 1966; McNeilly, 1972). The present report describes the simultaneous release of oxytocin and neurophysin during parturition in the goat.
Serial blood samples (approx. 10 ml each) were taken from an indwelling jugular cannula during the whole of labour in two pedigree British Saanen goats. Samples
Search for other papers by I Ibanez De Caceres in
Google Scholar
PubMed
Search for other papers by MA Villanua in
Google Scholar
PubMed
Search for other papers by L Soto in
Google Scholar
PubMed
Search for other papers by AI Martin in
Google Scholar
PubMed
Search for other papers by A Lopez-Calderon in
Google Scholar
PubMed
Adjuvant-induced arthritis in rats is associated with growth failure, hypermetabolism and accelerated protein breakdown. We have previously reported that adjuvant-induced arthritis in rats results in a decrease in body weight gain, pituitary GH mRNA, circulating GH and IGF-I together with an increase in serum IGF-binding proteins (IGFBPs). The aim of this study was to analyze the role of GH in the decrease in body weight and in the alterations in the IGF-I system observed in chronic inflammation. Male Wistar rats were injected with complete Freund's adjuvant and 16 days later arthritic rats were injected daily with recombinant human GH (rhGH) (3 IU/kg s.c.) for 8 days; control rats received 250 microl saline. Arthritis significantly decreased body weight gain and serum IGF-I. These decreases were not due to the reduced food intake, since in pair-fed rats they were not observed. Furthermore, administration of rhGH to arthritic rats increased body weight gain without modifying food intake. To further investigate the effect of GH administration, 14 days after adjuvant injection both control and arthritic rats were treated with 0, 1.5, 3 or 6 IU/kg of rhGH. GH treatment at the dose of 3 and 6 IU/kg significantly increased body weight gain in arthritic rats. GH administration, at the higher dose of 6 IU/kg, increased hepatic and serum concentrations of IGF-I in both control and arthritic rats. In control rats, rhGH at the three doses assayed increased circulating IGFBP-3. GH treatment in arthritic rats decreased IGFBP-1 and -2, and did not modify IGFBP-4. GH treatment at the dose of 3 IU/kg also decreased circulating IGFBP-3 in arthritic rats. These data suggest that GH treatment can ameliorate the catabolism observed in adjuvant-induced arthritis, an effect mediated, at least in part, by modifications in the circulating IGFBPs.
Search for other papers by I Ibanez De Caceres in
Google Scholar
PubMed
Search for other papers by JM Holly in
Google Scholar
PubMed
Search for other papers by T Priego in
Google Scholar
PubMed
Search for other papers by AI Martin in
Google Scholar
PubMed
Search for other papers by A Lopez-Calderon in
Google Scholar
PubMed
Search for other papers by MA Villanua in
Google Scholar
PubMed
Adjuvant-induced arthritis is a chronic inflammatory illness that induces a catabolic state, with a decrease in pituitary GH and hepatic IGF-I synthesis. We have previously observed an increase in serum IGF-binding protein-3 (IGFBP-3) in arthritic rats, and found that GH administration prevents the increase in circulating IGFBP-3 in arthritic rats. The aim of this work was therefore to study IGFBP-3 synthesis in the liver as well as its proteolysis in serum as the two possible causes of the increased circulating IGFBP-3 in arthritic rats. The effect of recombinant human GH (rhGH) administration was also analysed. Adult male Wistar rats were injected with complete Freund's adjuvant or vehicle, and 14 days later they were injected s.c. daily until day 22 after adjuvant injection with rhGH (3 IU/kg) or saline. Three hours after the last GH injection, all rats were killed by decapitation. Arthritis increased serum IGFBP-3 levels (P<0.01). The increase in serum IGFBP-3 levels in arthritic rats seems to be due to decreased proteolysis (P<0.01) rather than to an increased synthesis, since liver IGFBP-3 mRNA content was not modified by arthritis. GH administration to control rats resulted in an increase in both hepatic IGFBP-3 mRNA content and in serum IGFBP-3 levels in spite of the increase in IGFBP-3 proteolysis in serum. In arthritic rats, GH treatment did not modify liver IGFBP-3 synthesis, but it increased serum proteolysis of IGFBP-3, leading to a serum concentration of IGFBP-3 similar to that of control rats. Furthermore, there was a negative correlation between circulating IGFBP-3 and its proteolytic activity in the serum of adjuvant-induced arthritic rats. These data suggest that in chronic arthritis the increase in IGFBP-3 serum concentration is secondary to a decrease in proteolytic activity, rather than to an increase in hepatic IGFBP-3 gene expression.