Search Results

You are looking at 1 - 8 of 8 items for

  • Author: A Mostyn x
  • Refine by Access: All content x
Clear All Modify Search
Free access

ME Symonds, A Mostyn, S Pearce, H Budge, and T Stephenson

In the fetus, adipose tIssue comprises both brown and white adipocytes for which brown fat is characterised as possessing the unique uncoupling protein (UCP)1. The dual characteristics of fetal fat reflect its critical role at birth in providing lipid that is mobilised rapidly following activation of UCP1 upon cold exposure to the extra-uterine environment. A key stage in the maturation of fetal fat is the gradual rise in the abundance of UCP1. For species with a mature hypothalamic-pituitary axis at birth there is a gradual increase in the amount and activity of UCP1 during late gestation, in conjunction with an increase in the plasma concentrations of catecholamines, thyroid hormones, cortisol, leptin and prolactin. These may act individually, or in combination, to promote UCP1 expression and, following the post-partum surge in each hormone, UCP1 abundance attains maximal amounts.Adipose tIssue grows in the fetus at a much lower rate than in the postnatal period. However, its growth is under marked nutritional constraints and, in contrast to many other fetal organs that are unaffected by nutritional manipulation, fat mass can be significantly altered by changes in maternal and, therefore, fetal nutrition. Fat deposition in the fetus is enhanced during late gestation following a previous period of nutrient restriction up to mid gestation. This is accompanied by increased mRNA abundance for the receptors of IGF-I and IGF-II. In contrast, increasing maternal nutrition in late gestation results in less adipose tIssue deposition but enhanced UCP1 abundance. The pronounced nutritional sensitivity of fetal adipose tIssue to both increased and decreased maternal nutrition may explain why the consequences of an adverse nutritional environment persist into later life.

Free access

H Budge, A Mostyn, V Wilson, A Khong, AM Walker, ME Symonds, and T Stephenson

The present study determines whether maternal administration of prolactin (PRL) to dams promotes the abundance of the brown adipose tissue-specific uncoupling protein-1 (UCP1) in fetal and neonatal rat pups. Recombinant PRL (24 micro g/kg per day), or an equivalent volume of saline, were infused into dams (n=19 per group) throughout pregnancy from 12 h after mating. Interscapular brown adipose tissue was sampled either from fetuses at 19.5 days of gestation (term=21.5 days) or from neonatal rat pups at approximately 18 h after birth. The abundance of UCP1 was determined by immunoblotting on adipose tissue samples from individual pups and pooled from groups of pups. This analysis was complemented by immunocytochemistry on representative adipose tissue samples. Maternal PRL infusion resulted in a greater abundance of UCP1 in fetal rats at 19.5 days of gestation (control: 97.2+/-8.4% reference; PRL: 525.6+/-74.4% reference; P<0.001) and in neonates 18 h after birth. In contrast, the abundance of the outer mitochondrial membrane protein voltage-dependent anion channel was unaffected by PRL. Neonatal adipose tissue sampled from pups born to PRL-infused dams possessed fewer lipid droplets, but more UCP1, as determined by immunocytochemistry. Fetal, but not maternal, plasma leptin concentrations were also increased by maternal PRL administration. In conclusion, as rats are altricial, and the potential thermogenic activity of brown adipose tissue develops over the first few days of postnatal life, these changes prior to, and at the time of, birth implicate PRL in fetal and neonatal adipose tissue maturation.

Free access

JM Brameld, A Mostyn, J Dandrea, TJ Stephenson, JM Dawson, PJ Buttery, and ME Symonds

We investigated the influence of maternal dietary restriction between days 28 and 80 of gestation followed by re-feeding to the intake of well-fed ewes up to 140 days of gestation (term is 147 days) in sheep, on expression of mRNA for insulin-like growth factor (IGF)-I, IGF-II and growth hormone receptor (GHR) in fetal liver and skeletal muscle. Singleton bearing ewes either consumed 3.2-3.8 MJ/day of metabolisable energy (ME) (i.e. nutrient restricted - approximately 60% of ME requirements, taking into account requirements for both ewe maintenance and growth of the conceptus) or 8.7-9.9 MJ/day (i.e. well fed - approximately 150% of ME requirements) between days 28 and 80 of gestation. All ewes were then well fed (150% of ME requirements) up to day 140 of gestation and consumed 8-10.9 MJ/day. At days 80 and 140 of gestation, five ewes were sampled from each group and fetal tissues taken. There was no difference in fetal body weight or liver weights between groups at either sampling date, or skeletal muscle (quadriceps) weight at 140 days. IGF-I mRNA abundance was lower in livers of nutrient-restricted fetuses at day 80 of gestation (nutrient restricted 2.35; well fed 3.70 arbitrary units), but was higher than well-fed fetuses at day 140 of gestation, after 60 days of re-feeding (restricted/re-fed 4.27; well fed 2.83;s.e.d. 0.98 arbitrary units, P=0.061 for dietxage interaction). IGF-II mRNA abundance was consistently higher in livers of nutrient-restricted fetuses (80 days: nutrient restricted 7.78; well fed 5.91; 140 days: restricted/re-fed 7.23; well fed 6.01;s.e.d. 1.09 arbitrary units, P=0.061 for diet). Nutrient restriction had no effect on hepatic GHR mRNA abundance, but re-feeding of previously nutrient-restricted fetuses increased GHR mRNA compared with continuously well-fed fetuses (80 days: nutrient restricted 70.6; well fed 75.1; 140 days: restricted/re-fed 115.7; well fed 89.4;s.e.d. 10.13 arbitrary units, P=0.047 for dietxage interaction). In fetal skeletal muscle, IGF-I mRNA abundance was not influenced by maternal nutrition and decreased with gestation age (P<0.01). IGF-II mRNA abundance was higher in skeletal muscle of nutrient-restricted fetuses compared with well-fed fetuses at day 80 of gestation (nutrient restricted 16.72; well fed 10.53 arbitrary units), but was lower than well-fed fetuses after 60 days of re-feeding (restricted/re-fed 7.77; well fed 13.72;s.e.d. 1.98 arbitrary units, P<0.001 for dietxage interaction). There was no effect of maternal nutrition or gestation age on fetal skeletal muscle GHR expression. In conclusion, maternal nutrient restriction in early to mid gestation with re-feeding thereafter results in alterations in hepatic and skeletal muscle expression of IGF-I, IGF-II and/or GHR in the fetus which may subsequently relate to altered organ and tissue function.

Free access

M G Gnanalingham, A Mostyn, D S Gardner, T Stephenson, and M E Symonds

Glucocorticoid action has a major role in regulating fetal and postnatal lung development, although its impact on mitochondrial development is less well understood. Critically, the consequences of any change in glucocorticoid action and mitochondrial function in early life may not be limited to the postnatal period, but may extend into later life. This paper focuses on more recent findings on the impact of ontogeny, fetal cortisol status, maternal nutrient restriction and postnatal leptin administration on mitochondrial uncoupling protein (UCP)-2, glucocorticoid receptor (GR) and 11 β-hydroxysteroid dehydrogenase type 1 (11βHSD1) isoform abundance in the lung. For example, in sheep, GR and 11βHSD1 mRNA are maximal at 140 days’ gestation (term ~147 days), while UCP2 mRNA peaks at 1 day after birth and then decreases with advancing age. In the fetus, chronic umbilical cord compression enhances the abundance of these genes, an outcome that can also be produced after birth following chronic, but not acute, leptin administration. Irrespective of the timing of maternal nutrient restriction in pregnancy, glucocorticoid sensitivity and UCP2 abundance are both upregulated in the lungs of the resulting offspring. In conclusion, prenatal and postnatal endocrine challenges have distinct effects on mitochondrial development in the lung resulting from changes in glucocorticoid action, which can persist into later life. As a consequence, changes in glucocorticoid sensitivity and mitochondrial protein abundance have the potential to be used to identify those at greatest risk of developing later lung disease.

Free access

A Mostyn, S Pearce, H Budge, M Elmes, AJ Forhead, AL Fowden, T Stephenson, and ME Symonds

The present study examined the extent to which the late gestation rise in fetal plasma cortisol influenced adipose tIssue development in the fetus. The effect of cortisol on the abundance of adipose tIssue mitochondrial proteins on both the inner (i.e. uncoupling protein (UCP)1) and outer (i.e. voltage-dependent anion channel (VDAC)) mitochondrial membrane, together with the long and short forms of the prolactin receptor (PRLR) protein and leptin mRNA was determined. Perirenal adipose tIssue was sampled from ovine fetuses to which (i) cortisol (2-3 mg/day for 5 days) or saline was infused up to 127-130 days of gestation, and (ii) adrenalectomised and intact controls at between 142 and 145 days of gestation (term=148 days). UCP1 protein abundance was significantly lower in adrenalectomised fetuses compared with age-matched controls, and UCP1 was increased by cortisol infusion and with gestational age. Adrenalectomy reduced the concentration of the long form of PRLR, although this effect was only significant for the highest molecular weight isoform. In contrast, neither the short form of PRLR, VDAC protein abundance or leptin mRNA expression was significantly affected by gestational age or cortisol status. Fetal plasma triiodothyronine concentrations were increased by cortisol and with gestational age, an affect abolished by adrenalectomy. When all treatment groups were combined, both plasma cortisol and triiodothyronine concentrations were positively correlated with UCP1 protein abundance. In conclusion, an intact adrenal is necessary for the late gestation rise in UCP1 protein abundance but cortisol does not appear to have a major stimulatory role in promoting leptin expression in fetal adipose tIssue. It remains to be established whether effects on UCP1 protein are directly regulated by cortisol alone or mediated by other anabolic fetal hormones such as triiodothyronine.

Free access

S Pearce, H Budge, A Mostyn, E Genever, R Webb, P Ingleton, A M Walker, M E Symonds, and T Stephenson

A primary role of the prolactin receptor (PRLR) during fetal and postnatal development has been suggested to be the regulation of uncoupling protein (UCP) expression. We, therefore, determined whether: (1) the rate of loss of UCP1 from brown adipose tissue after birth was paralleled by the disappearance of PRLR; and (2) administration of either pituitary extract prolactin (PRL) containing a mixture of posttranslationally modified forms or its pseudophosphorylated form (S179D PRL) improved thermoregulation and UCP1 function over the first week of neonatal life. PRLR abundance was greatest in adipose tissue 6 h after birth before declining up to 30 days of age, a trend mirrored by first a gain and then a loss of UCP1. In contrast, in the liver – which does not possess UCPs –a postnatal decline in PRLR was not observed. Administration of PRL resulted in an acute increase in colonic temperature in conjunction with increased plasma concentrations of non-esterified fatty acids and, as a result, the normal postnatal decline in body temperature was delayed. S179D PRL at lower concentrations resulted in a transient rise in colonic temperature at both 2 and 6 days of age. In conclusion, we have demonstrated a close relationship between the ontogeny of UCP1 and the PRLR. Exogenous PRL administration elicits a thermogenic effect suggesting an important role for the PRLR in regulating UCP1 function.

Free access

A Mostyn, J C Litten, K S Perkins, M C Alves-Guerra, C Pecqueur, B Miroux, M E Symonds, and L Clarke

The present study aimed to determine whether porcine genotype and/or postnatal age influenced mRNA abundance or protein expression of uncoupling protein (UCP)2 or 3 in subcutaneous adipose tissue (AT) and skeletal muscle (SM) and the extent to which these differences are associated with breed-specific discordance in endocrine and metabolic profiles. Piglets from commercial and Meishan litters were ranked according to birth weight. Tissue samples were obtained from the three median piglets from each litter on either day 0, 4, 7, 14 or 21 of neonatal life. UCP2 protein abundance in AT was similar between genotypes on the first day of life, but it was elevated at all subsequent postnatal ages (P<0.05) in AT of Meishan piglets. In contrast, UCP2 mRNA abundance was lower in Meishans up to 14 days of age. UCP2 mRNA expression was not correlated with protein abundance in either breed at any age. UCP3 mRNA in AT was similar between breeds up to day 7; thereafter, expression was higher (general linear model, P<0.05) in Meishan piglets. Conversely, UCP3 mRNA expression in SM was higher in commercial piglets after day 7. Colonic temperature remained lower in Meishan than commercial piglets throughout the study; this was most obvious in the immediate post-partum period when Meishan piglets had lower (P<0.05) plasma triiodothyronine. In conclusion, we have demonstrated that porcine genotype influences the expression and abundance of UCP2 and 3, an influence which may, in part, be due to the distinctive endocrine profiles associated with each genotype.

Free access

M G Gnanalingham, A Mostyn, J Wang, R Webb, D H Keisler, N Raver, M C Alves-Guerra, C Pecqueur, B Miroux, T Stephenson, and M E Symonds

Many tissues undergo a rapid transition after birth, accompanied by dramatic changes in mitochondrial protein function. In particular, uncoupling protein (UCP) abundance increases at birth in the lung and adipose tissue, to then gradually decline, an adaptation that is important in enabling normal tissue function. Leptin potentially mediates some of these changes and is known to promote the loss of UCP1 from brown fat but its effects on UCP2 and related mitochondrial proteins (i.e. voltage-dependent anion channel (VDAC) and cytochrome c) in other tissues are unknown. We therefore determined the effects of once-daily jugular venous administration of ovine recombinant leptin on mitochondrial protein abundance as determined by immunoblotting in tissues that do (i.e. the brain and pancreas) and do not (i.e. liver and skeletal muscle) express UCP2. Eight pairs of 1-day-old lambs received either 100 μg leptin or vehicle daily for 6 days, before tissue sampling on day 7. Administration of leptin diminished UCP2 abundance in the pancreas, but not the brain. Leptin administration had no affect on the abundance of VDAC or cytochrome c in any tissue examined. In leptin-administered animals, but not controls, UCP2 abundance in the pancreas was positively correlated with VDAC and cytochrome c content, and UCP2 abundance in the brain with colonic temperature. In conclusion, leptin administration to neonatal lambs causes a tissue-specific loss of UCP2 from the pancreas. These effects may be important in the regulation of neonatal tissue development and potentially for optimising metabolic control mechanisms in later life.