Search Results

You are looking at 1 - 3 of 3 items for

  • Author: AI Turner x
  • Refine by Access: All content x
Clear All Modify Search
Free access

AI Turner, AJ Tilbrook, IJ Clarke, and CJ Scott

We tested the hypotheses that progesterone enhances the negative feedback actions of testosterone in rams and that this occurs through actions at the hypothalamus. In the first part of this study, blood samples were collected every 10 min for 12 h before and after 7 days of treatment (i.m.) of castrated Romney Marsh rams (n=5 per group) with vehicle, progesterone (4 mg/12 h), testosterone (4 mg/12 h) or a combination of progesterone (4 mg/12 h) and testosterone (4 mg/12 h). In the second part of this study the brains of four gonad-intact Romney Marsh rams were collected, the hypothalamus was sectioned and in situ hybridisation of mRNA for progesterone receptors conducted. After 7 days of treatment with vehicle or progesterone or testosterone alone, there were no changes in the secretion of LH. In contrast, treatment with a combination of progesterone and testosterone resulted in a significant (P<0.01, repeated measures ANOVA) decrease in mean plasma concentrations of LH, the number of LH pulses per hour and the pre-LH pulse nadir and a significant (P<0.01) increase in the inter-LH pulse interval. We found cells containing mRNA for progesterone receptors throughout the hypothalamus, including the preoptic area (where most GnRH neurons are located in sheep), the periventricular, ventromedial and arcuate nuclei and the bed nucleus of the stria terminalis. This study shows that progesterone is capable of acting centrally with testosterone to suppress the secretion of LH in castrated rams and that cells containing mRNA for progesterone receptors are located in the hypothalamus of rams in the vicinity of GnRH neurons.

Free access

AI Turner, PH Hemsworth, BJ Canny, and AJ Tilbrook

Prolonged stress is known to impair reproduction. It has been proposed that reproduction will also be impaired when a severe acute stress occurs during a period of elevated plasma concentrations of oestradiol, such as during the follicular phase of the oestrous cycle. In this experiment, we hypothesised that repeated acute and sustained elevation of cortisol would suppress the secretion of LH in ovariectomised pigs and that these effects would be enhanced in the presence of oestradiol negative feedback. Cortisol (or vehicle) was administered 12 hourly to ovariectomised pigs (n=6/treatment) for 8 days in the absence of oestradiol treatment and for a further 8 days during treatment with oestradiol. Vehicle was administered to 'control' pigs, 10 or 20 mg cortisol was administered i.v. to pigs to produce 'repeated acute' elevation of cortisol and 250 mg cortisol was administered i.m. to pigs to give a 'sustained' elevation of cortisol. Both before and during treatment with oestradiol, plasma concentrations of LH were monitored on the day before treatment, on the 4th and 8th days of treatment and following an i.v. injection of GnRH at the end of the 8th day of treatment. The repeated acute elevation of cortisol did not impair any parameters of LH secretion (i.e. mean plasma concentrations of LH, pulse amplitude or frequency, pre-LH pulse nadir or the LH response to GnRH) in the absence or in the presence of oestradiol. In contrast, when the elevation of cortisol was sustained, the mean plasma concentrations of LH and the pre-LH pulse nadir were significantly (P<0.05) lower on the 8th day of treatment than on the day before treatment and on the 4th day of treatment. Nevertheless, no other parameters of LH secretion were affected and these effects only occurred in the absence (not in the presence) of oestradiol. In conclusion, cortisol needed to be elevated for more than 4 days to impair the secretion of LH, and oestradiol did not enhance the impact of cortisol on LH secretion in ovariectomised pigs.

Free access

AI Turner, BJ Canny, RJ Hobbs, JD Bond, IJ Clarke, and AJ Tilbrook

There are sex differences in the response to stress and in the influence of stress on reproduction which may be due to gonadal steroids but the nature of these differences and the role of the gonads are not understood. We tested the hypotheses that sex and the presence/absence of gonads (gonadal status) will influence the cortisol response to injection of ACTH, insulin-induced hypoglycaemia and isolation/restraint stress, and that sex and gonadal status will influence the secretion of LH in response to isolation/restraint stress. Four groups of sheep were used in each of three experiments: gonad-intact rams, gonadectomised rams, gonad-intact ewes in the mid-luteal phase of the oestrous cycle and gonadectomised ewes. In Experiment 1 (n=4/group), jugular blood samples were collected every 10 min for 6 h; after 3 h, two animals in each group were injected (i.v.) with ACTH and the remaining two animals were injected (i.v.) with saline. Treatments were reversed 5 days later so that every animal received both treatments. Experiment 2 (n=4/group) used a similar schedule except that insulin was injected (i.v.) instead of ACTH. In Experiment 3 (n=5/group), blood samples were collected every 10 min for 16 h on a control day and again 2 weeks later when, after 8 h of sampling, all sheep were isolated and restrained for 8 h. Plasma cortisol was significantly (P<0.05) elevated following injection of ACTH or insulin and during isolation/restraint stress. There were no significant differences between the sexes in the cortisol response to ACTH. Rams had a greater (P<0.05) cortisol response to insulin-induced hypoglycaemia than ewes while ewes had a greater (P<0.05) cortisol response to isolation/restraint stress than rams. There was no effect of gonadal status on these parameters. Plasma LH was suppressed (P<0.05) in gonadectomised animals during isolation/restraint stress but was not affected in gonad-intact animals, and there were no differences between the sexes. Our results show that the sex that has the greater cortisol response to a stressor depends on the stressor imposed and that these sex differences are likely to be at the level of the hypothalamo-pituitary unit rather than at the adrenal gland. Since there was a sex difference in the cortisol response to isolation/restraint, the lack of a sex difference in the response of LH to this stress suggests that glucocorticoids are unlikely to be a major mediator of the stress-induced suppression of LH secretion.