Search Results

You are looking at 1 - 3 of 3 items for

  • Author: AS Giraud x
  • Refine by Access: All content x
Clear All Modify Search
Free access

JC Whitley, C Moore, AS Giraud, and A Shulkes

High concentrations of a peptide related to gastrin-releasing peptide (GRP) are produced in the utero-placental unit of the human and sheep and secreted into the general circulation. This suggests an endocrine role in addition to its role as a neurotransmitter/neuromodulator. The GRP is larger than the previously described form GRP(1-27) but it is not known whether the larger form is the product of a related GRP-like gene or differences in post-translational processing. We have therefore cloned the gene for the sheep homologue of the GRP gene and determined its distribution. Only a single GRP gene was found in the sheep. This had a similar organisation to the human GRP gene with three exons and two introns. The larger form of GRP in the pregnant endometrium therefore appears to be the result of an alteration in processing of the GRP prohormone. The expression of GRP mRNA in the pregnant uterus was extraordinarily high comprising one-third of all mRNA synthesised by the pregnant endometrium. As the endometrial GRP mRNA arises solely from the glandular epithelium, the localised synthesis of GRP mRNA would be far higher. GRP mRNA was expressed in a wide variety of fetal tissues (fundus, colon, jejunum, ileum, duodenum, kidney, adrenal, lung, heart and pancreas) with a corresponding presence of GRP immunoreactivity. The expression of GRP in the fetal lung was biphasic with peaks at mid-term and near parturition but none in the adult supporting the concept of a specific developmental role of GRP in the lung.

Free access

JC Whitley, AS Giraud, AO Mahoney, IJ Clarke, and A Shulkes

In the ovine endometrium, dramatic increases in gastrin-releasing peptide (GRP) mRNA and immunoreactivity are observed during the luteal regression phase of the oestrous cycle (24-fold) and during pregnancy (at least 150-fold). This study sought to determine whether oestrogen and/or progesterone were responsible for the temporal regulation of GRP observed in the uterus. Ovariectomized sheep were divided into four groups (n=4), as follows: 1, untreated; 2, given subcutaneous and intravaginal progesterone implants; 3, given subcutaneous oestrogen implants; and 4, treated with both oestrogen and progesterone. After 10 days, the animals were sacrificed and plasma, pituitary and endometrium were obtained. A fifth group of sheep with intact ovaries was included. Analysis of endometrial GRP-immunoreactivity (GRP-ir) revealed a twofold drop for groups treated with oestrogen, progesterone or both hormones. A dramatic reduction in endometrial GRP mRNA was o! bserved in the group treated with both hormones. GRP-ir was measured in whole pituitaries and found to vary greatly (1.7-53.7 pmol/g tissue) within all groups of ovariectomized animals. There were no significant differences between any of the five groups. A significant reduction in circulating GRP-ir was observed after 10 days of treatment with either oestrogen or progesterone. These studies demonstrate that, in sheep, the synthesis, storage and secretion of GRP are differentially affected by oestrogen and progesterone. Regulation appears to be tissue specific since GRP content in the pituitary is unchanged by oestrogen or progesterone whereas GRP expression in the endometrium is inhibited. Changes in GRP mRNA expression did not correlate with changes in endometrial expression of mRNA for oestrogen receptor alpha, oestrogen receptor beta and the progesterone receptor. This study is the first reported demonstration that expression of the GRP gene can be influenced by the presence of ovarian steroids, with the conclusion that oestrogen and/or progesterone act as negative regulators of endometrial GRP expression.

Free access

JC Whitley, A Shulkes, LA Salamonsen, D Vogiagis, M Familari, and AS Giraud

Synthesis of both mRNA and peptide for gastrin-releasing peptide (GRP) has been demonstrated in the pregnant endometrium of sheep and women. However, it is not known whether GRP is synthesized in the sheep uterus during the oestrous cycle. Furthermore the cellular site of GRP mRNA synthesis in the uterus has not been determined. Therefore we examined the synthesis of GRP and determined the cellular location of GRP peptide and mRNA in sheep uterus taken at different times during the oestrous cycle (duration 17 days) and pregnancy (duration 145 days). Northern blot analysis of RNA isolated from ovine endometrium revealed low or no GRP mRNA at days 4, 10, 12 and 14 of the oestrous cycle and a 24-fold rise in GRP mRNA (normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA) between days 14 and 16. A similar pattern was observed during early pregnancy, with a 12-fold rise in GRP mRNA:GAPDH mRNA between days 17 and 20 of pregnancy. Levels of GRP peptide were determined by RIA and found to be low in endometrium isolated at days 4, 10, 12 and 14 of the oestrous cycle (1.0-1.6 pmol/g) and 4 to 5-fold higher at day 16. In situ hybridization localized GRP synthesis to the epithelial cells of the uterine glands at day 16 of the oestrous cycle and at days 17, 20, 40 and 50 of pregnancy. At day 140 of pregnancy diffuse hybridization to cells of the myometrium was also observed. Immunohistochemistry localized GRP peptide to the apical cytoplasm of uterine glandular epithelial cells at day 16 of the oestrous cycle. For samples obtained at day 20 of pregnancy, the area surrounding the glands also showed moderately strong staining. Further staining in the glandular lumen and the stromal tissue surrounding the glands was apparent at day 140 of pregnancy. No GRP immunoreactivity could be detected in the peripheral plasma during the oestrous cycle or the first 20 days of pregnancy. Sizing chromatography of GRP immunoreactivity extracted from endometrial tissue taken at day 10 of the oestrous cycle revealed two peaks that co-eluted with GRP(1-27) and GRP(18-27). However, during luteolysis and oestrus the major peak of GRP immunoreactivity extracted from endometrial tissue was larger than GRP(1-27) and similar to that seen previously in the gravid ovine endometrium. These studies demonstrate that a peptide similar to, but larger than, GRP is a major product of the glandular epithelium of the ovine uterus during the luteal regression phase of the oestrous cycle and post-blastocyst implantation in pregnancy and provide further evidence that GRP-related peptides have important regulatory roles in uterine function.