Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Alexei Kharitonenkov x
Clear All Modify Search
Free access

Ricardo J Samms, Michelle Murphy, Maxine J Fowler, Scott Cooper, Paul Emmerson, Tamer Coskun, Andrew C Adams, Alexei Kharitonenkov, Francis J P Ebling and Kostas Tsintzas

The aim of this study was to investigate the mechanisms by which fibroblast growth factor 21 (FGF21) affects hepatic integration of carbohydrate and fat metabolism in Siberian hamsters, a natural model of adiposity. Twelve aged matched adult male Siberian hamsters maintained in their long-day fat state since birth were randomly assigned to one of two treatment groups and were continuously infused with either vehicle (saline; n=6) or recombinant human FGF21 protein (1 mg/kg per day; n=6) for 14 days. FGF21 administration caused a 40% suppression (P<0.05) of hepatic pyruvate dehydrogenase complex (PDC), the rate-limiting step in glucose oxidation, a 34% decrease (P<0.05) in hepatic acetylcarnitine accumulation, an index of reduced PDC flux, a 35% increase (P<0.05) in long-chain acylcarnitine content (an index of flux through β-oxidation) and a 47% reduction (P<0.05) in hepatic lipid content. These effects were underpinned by increased protein abundance of PD kinase-4 (PDK4, a negative regulator of PDC), the phosphorylated (inhibited) form of acetyl-CoA carboxylase (ACC, a negative regulator of delivery of fatty acids into the mitochondria) and the transcriptional co-regulators of energy metabolism peroxisome proliferator activated receptor gamma co-activator alpha (PGC1α) and sirtuin-1. These findings provide novel mechanistic basis to support the notion that FGF21 exerts profound metabolic benefits in the liver by modulating nutrient flux through both carbohydrate (mediated by a PDK4-mediated suppression of PDC activity) and fat (mediated by deactivation of ACC) metabolism, and therefore may be an attractive target for protection from increased hepatic lipid content and insulin resistance that frequently accompany obesity and diabetes.

Free access

Aijun Zhang, Douglas H Sieglaff, Jean Philippe York, Ji Ho Suh, Stephen D Ayers, Glenn E Winnier, Alexei Kharitonenkov, Christopher Pin, Pumin Zhang, Paul Webb and Xuefeng Xia

Thyroid hormone (TH) acts through specific receptors (TRs), which are conditional transcription factors, to induce fibroblast growth factor 21 (FGF21), a peptide hormone that is usually induced by fasting and that influences lipid and carbohydrate metabolism via local hepatic and systemic endocrine effects. While TH and FGF21 display overlapping actions when administered, including reductions in serum lipids, according to the current models these hormones act independently in vivo. In this study, we examined mechanisms of regulation of FGF21 expression by TH and tested the possibility that FGF21 is required for induction of hepatic TH-responsive genes. We confirm that active TH (triiodothyronine (T3)) and the TRβ-selective thyromimetic GC1 increase FGF21 transcript and peptide levels in mouse liver and that this effect requires TRβ. T3 also induces FGF21 in cultured hepatocytes and this effect involves direct actions of TRβ1, which binds a TRE within intron 2 of FGF21. Gene expression profiles of WT and Fgf21-knockout mice are very similar, indicating that FGF21 is dispensable for the majority of hepatic T3 gene responses. A small subset of genes displays diminished T3 response in the absence of FGF21. However, most of these are not obviously directly involved in T3-dependent hepatic metabolic processes. Consistent with these results, T3-dependent effects on serum cholesterol are maintained in the Fgf21 −/− background and we observe no effect of the Fgf21-knockout background on serum triglycerides and glucose. Our findings indicate that T3 regulates the genes involved in classical hepatic metabolic responses independently of FGF21.