Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Amanda J Page x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Prashant Regmi, Rajesh Chaudhary, Amanda J Page, Amy T Hutchison, Andrew D Vincent, Bo Liu, and Leonie Heilbronn

Time-restricted feeding (TRF) initiated early during the dark phase prevents the metabolic consequences of a high-fat diet in rodent models. However, the metabolic consequences of delaying the initiation of TRF, akin to breakfast skipping in humans, is unclear. We assigned 8-week-old male C57BL/6J mice (n = 192) to chow or high-fat diet ad libitum (AL) for 4 weeks, before randomization to continue AL or 10 h of TRF, initiated at lights off (TRFe) or 4-h after lights off (TRFd) for a further 8 weeks. Oral glucose tolerance tests (1 g/kg), metabolic monitoring and body composition by echoMRI were performed, and tissues were collected at six time points. TRF reduced weight and fat mass vs AL, with a greater reduction in TRFe vs TRFd. TRF improved glucose tolerance and protected mice from high-fat diet-induced hepatosteatosis vs AL, with no difference between TRFe and TRFd. TRF increased the amplitude of Bmal1, Cry1, Per2, Nampt, and Nocturnin mRNA levels in liver. A phase delay in Bmal1, Cry1, Per2, Reverbα, Nampt, NAD, Sirt1, and Nocturnin was observed in TRFd. Thus, delaying TRF limited the weight benefit and induced a phase delay in the hepatic clock, but improved metabolic health. Allowing more flexibility in when TRF is initiated may increase the translational potential of this dietary approach in humans.

Free access

Harleen Kaur, Beverly S Muhlhausler, Pamela Su-Lin Sim, Amanda J Page, Hui Li, Maria Nunez-Salces, Georgia S Clarke, Lili Huang, Rebecca L Wilson, Johannes D Veldhuis, Chen Chen, Claire T Roberts, and Kathryn L Gatford

Circulating growth hormone (GH) concentrations increase during pregnancy in mice and remain pituitary-derived. Whether abundance or activation of the GH secretagogue ghrelin increase during pregnancy, or in response to dietary octanoic acid supplementation, is unclear. We therefore measured circulating GH profiles in late pregnant C57BL/6J mice and in aged-matched non-pregnant females fed with standard laboratory chow supplemented with 5% octanoic or palmitic (control) acid (n = 4–13/group). Serum total and acyl-ghrelin concentrations, stomach and placenta ghrelin mRNA and protein expression, Pcsk1 (encoding prohormone convertase 1/3) and Mboat4 (membrane bound O-acyl transferase 4) mRNA were determined at zeitgeber (ZT) 13 and ZT23. Total and basal GH secretion were higher in late pregnant than non-pregnant mice (P < 0.001), regardless of diet. At ZT13, serum concentrations of total ghrelin (P = 0.004), but not acyl-ghrelin, and the density of ghrelin-positive cells in the gastric antrum (P = 0.019) were higher, and gastric Mboat4 and Pcsk1 mRNA expression were lower in pregnant than non-pregnant mice at ZT23. In the placenta, ghrelin protein was localised mostly to labyrinthine trophoblast cells. Serum acyl-, but not total, ghrelin was lower at mid-pregnancy than in non-pregnant mice, but not different at early or late pregnancy. In conclusion, dietary supplementation with 5% octanoic acid did not increase activation of ghrelin in female mice. Our results further suggest that increases in maternal GH secretion throughout murine pregnancy are not due to circulating acyl-ghrelin acting at the pituitary. Nevertheless, time-dependent increased circulating total ghrelin could potentially increase ghrelin action in tissues that express the acylating enzyme and receptor.