Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Andrea M Caricilli x
Clear All Modify Search
Free access

Daniela F Bertelli, Andressa Coope, Andrea M Caricilli, Patricia O Prada, Mario J Saad, Licio A Velloso and Eliana P Araujo

The 72 kDa inositol polyphosphate 5-phosphatase E (72k-5ptase) controls signal transduction through the catalytic dephosphorylation of the 5-position of membrane-bound phosphoinositides. The reduction of 72k-5ptase expression in the hypothalamus results in improved hypothalamic insulin signal transduction and reduction of food intake and body mass. Here, we evaluated the tissue distribution and the impact of obesity on the expression of 72k-5ptase in peripheral tissues of experimental animals. In addition, insulin signal transduction and action were determined in an animal model of obesity and insulin resistance treated with an antisense (AS) oligonucleotide that reduces 72k-5ptase expression. In lean Wistar rats, 72k-5ptase mRNA and protein are found in highest levels in heart, skeletal muscle, and white adipose tissue. In three distinct models of obesity, Wistar rats, Swiss mice fed on high-fat diet, and leptin-deficient ob/ob mice, the expression of 72k-5ptase is increased in skeletal muscle and adipose tissue. The treatment of obese Wistar rats with an anti-72k-5ptase AS oligonucleotide results in significant reduction of 72k-5ptase catalytic activity, which is accompanied by reduced food intake and body mass and improved insulin signal transduction and action as determined by immunoblotting and clamp studies respectively. 72k-5ptase expression is increased in obesity and its AS inhibition resulted in a significant improvement in insulin signal transduction and restoration of glucose homeostasis.

Free access

Andréa M Caricilli, Paula H Nascimento, José R Pauli, Daniela M L Tsukumo, Lício A Velloso, José B Carvalheira and Mário J A Saad

The aims of the present study were to investigate the expression of toll-like receptor 2 (TLR2) in muscle and white adipose tissue (WAT) of diet-induced obesity (DIO) mice, and also the effects of its inhibition, with the use of TLR2 antisense oligonucleotide (ASON), on insulin sensitivity and signaling. The expression of TLR2 was increased in muscle and WAT of DIO mice, compared with those that received standard chow. Inhibition of TLR2 in DIO mice, by TLR2 ASON, improved insulin sensitivity and signaling in muscle and WAT. In addition, data show that the inhibition of TLR2 expression prevents the activation of IKBKB, MAPK8, and serine phosphorylation of IRS1 in DIO mice, suggesting that TLR2 is a key modulator of the crosstalk between inflammatory and metabolic pathways. We, therefore, suggest that a selective interference with TLR2 presents an attractive opportunity for the treatment of insulin resistance in obesity and type 2 diabetes.