Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Aritro Sen x
  • All content x
Clear All Modify Search
Free access

Hen Prizant, Norbert Gleicher, and Aritro Sen

For many decades, elevated androgens in women have been associated with poor reproductive health. However, recent studies have shown that androgens play a crucial role in women's fertility. The following review provides an overall perspective about how androgens and androgen receptor-mediated actions regulate normal follicular development, as well as discuss emerging concepts, latest perceptions, and controversies regarding androgen actions and signaling in the ovary.

Free access

Irving Salinas, Niharika Sinha, and Aritro Sen

In recent years, androgens have emerged as critical regulators of female reproduction and women’s health in general. While high levels of androgens in women are associated with polycystic ovary syndrome (PCOS), recent evidence suggests that a certain amount of direct androgen action through androgen receptor is also essential for normal ovarian function. Moreover, prenatal androgen exposure has been reported to cause developmental reprogramming of the fetus that manifests into adult pathologies, supporting the Developmental Origins of Health and Disease (DOHaD) hypothesis. Therefore, it has become imperative to understand the underlying mechanism of androgen actions and its downstream effects under normal and pathophysiological conditions. Over the years, there has been a lot of studies on androgen receptor function as a transcriptional regulator in the nucleus as well as androgen-induced rapid extra-nuclear signaling. Conversely, new evidence suggests that androgen actions may also be mediated through epigenetic modulation involving both the nuclear and extra-nuclear androgen signaling. This review focuses on androgen-induced epigenetic modifications in female reproduction, specifically in the ovary, and discusses emerging concepts, latest perceptions, and highlight the areas that need further investigation.