Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Atsunori Fukuhara x
Clear All Modify Search
Restricted access

Tomoaki Hayakawa, Tomomi Minemura, Toshiharu Onodera, Jihoon Shin, Yosuke Okuno, Atsunori Fukuhara, Michio Otsuki and Iichiro Shimomura

Active glucocorticoid levels are elevated in the adipose tissue of obesity due to the enzyme 11 beta-hydroxysteroid dehydrogenase type 1. Glucocorticoids can bind and activate both glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), and pharmacological blockades of MR prevent high-fat diet-induced obesity and glucose intolerance. To determine the significance of MR in adipocytes, we generated adipocyte-specific MR-knockout mice (AdipoMR-KO) and fed them high-fat/high-sucrose diet. We found that adipocyte-specific deletion of MR did not affect the body weight, fat weight, glucose tolerance or insulin sensitivity. While liver weight was slightly reduced in AdipoMR-KO, there were no significant differences in the mRNA expression levels of genes associated with lipogenesis, lipolysis, adipocytokines and oxidative stress in adipose tissues between the control and AdipoMR-KO mice. The results indicated that MR in mature adipocytes plays a minor role in the regulation of insulin resistance and inflammation in high-fat/high-sucrose diet-induced obese mice.

Free access

Katsumori Segawa, Morihiro Matsuda, Atsunori Fukuhara, Kentaro Morita, Yosuke Okuno, Ryutaro Komuro and Iichiro Shimomura

Adiponectin is exclusively expressed in adipose tissue and secreted from adipocytes, and shows anti-diabetic and anti-atherogenic properties. However, the precise transcriptional mechanism of adiponectin remains elusive. In this study, the 5′ flanking promoter region of human adiponectin gene was analyzed using UCSC genome browser, and a 10 390-bp fragment, containing an evolutionally conserved region among species, was investigated. The luciferase reporter assay using this fragment identified a novel distal enhancer of human adiponectin gene. Promoter constructs with the distal enhancer exhibited high promoter activities in 3T3-L1 mature adipocytes. However, no such activity was observed in other types of cell lines. The distal enhancer is highly conserved, and contains two completely conserved CCAAT boxes. In 3T3-L1 mature adipocytes, deletion or each point mutation of these CCAAT boxes markedly reduced luciferase activity driven by adiponectin promoter. Knockdown of CCAAT/enhancer-binding protein α (CEBPA; also known as C/EBPα) using small interfering RNA diminished adiponectin mRNA expression and luciferase activity driven by adiponectin promoter with the distal enhancer. However, adiponectin promoter with each mutation of two CCAAT boxes in the distal enhancer did not respond to knockdown of CEBPA expression. Furthermore, CEBPA bound to the distal enhancer both in vitro and in vivo. We also identified a proximal promoter region responsible for transcriptional activation by the distal enhancer in human adiponectin gene. Our results indicate that CEBPA plays a pivotal role in the transcription of human adiponectin gene via the distal enhancer and proximal region in its promoter.