Search Results

You are looking at 1 - 3 of 3 items for

  • Author: B Goke x
  • Refine by access: All content x
Clear All Modify Search
G. Richter
Search for other papers by G. Richter in
Google Scholar
PubMed
Close
,
R. Göke
Search for other papers by R. Göke in
Google Scholar
PubMed
Close
,
B. Göke
Search for other papers by B. Göke in
Google Scholar
PubMed
Close
, and
R. Arnold
Search for other papers by R. Arnold in
Google Scholar
PubMed
Close

ABSTRACT

The effect of dexamethasone on binding of glucagonlike peptide-1(7–36)amide (GLP-1(7–36)amide) to rat insulinoma-derived cells (RINm5F) was investigated. Preincubation of RINm5F cells with dexamethasone (100 nmol/l) for 24 h resulted in a decrease of GLP1(7-36)amide binding to 55·0±8·16% (mean ± s.e.m.), incubation for 48 h to 39·1±1·76%, and for 72 h to 15·5±4·35% of maximal binding. The GLP-1(7–36)amide-induced stimulation of cyclic AMP (cAMP) production was significantly decreased to 61·03±7·4% of maximum production in cells pretreated with dexamethasone (100 nmol/l) for 48 h. The decreased binding was due to a reduction of the receptor number while the receptor affinity remained unchanged. These inhibitory effects on binding and cAMP formation induced by dexamethasone were completely abolished when the antiglucocorticoid RU 38486 (100 nmol/l) was added during preincubation with dexamethasone. RU 38486 alone had no effects. Our data suggest that the biological action of GLP-1(7–36) amide at the B-cell may be modified by glucocorticoids.

Journal of Endocrinology (1990) 126, 445–450

Restricted access
C Herrmann-Rinke
Search for other papers by C Herrmann-Rinke in
Google Scholar
PubMed
Close
,
A Vöge
Search for other papers by A Vöge in
Google Scholar
PubMed
Close
,
M Hess
Search for other papers by M Hess in
Google Scholar
PubMed
Close
, and
B Göke
Search for other papers by B Göke in
Google Scholar
PubMed
Close

Abstract

Food ingestion induces a rapid increase in the insulinotropic glucagon-like peptide-1 (GLP-1) in plasma. Paradoxically, GLP-1 originates from the lower intestines and therefore a complex regulation of postprandial GLP-1 secretion must exist. This was addressed in the present study by utilizing an isolated vascularly perfused rat ileum preparation. Peptides and neurotransmitters thought to be candidate mediators triggering GLP-1 secretion were arterially infused and GLP-1 was measured in the venous effluent. Arterial infusion of cholinergic agonists strongly enhanced GLP-1 secretion which was counteracted by the addition of atropine. Histamine, dopamine, 5-hydoxytryptamine, γ-aminobutyric acid, and norepinephrine had no effect. Peptides of the bombesin family were strong stimulants whereas tachykinins, enkephalins, dynorphin, TRH, calcitonin-gene-related peptide and members of the secretin family, vasoactive intestinal peptide, peptide histidine isoleucine and neuropeptide Y, were less effective. The second incretin hormone, gastric inhibitory polypeptide (GIP), was the most potent stimulant of GLP-1 secretion in our study. It enhanced GLP-1 release up to sixfold above basal during the early phase followed by a sustained secretion at 400% above basal. This stimulation remained unaffected by atropine. In conclusion, in addition to luminal stimulation of nutrients, a cholinergic impulse as well as peptidergic mediators (among them possibly GIP and GRP) may have an impact on postprandial GLP-1 secretion from the rat ileum.

Journal of Endocrinology (1995) 147, 25–31

Restricted access
J Schirra
Search for other papers by J Schirra in
Google Scholar
PubMed
Close
,
P Leicht
Search for other papers by P Leicht in
Google Scholar
PubMed
Close
,
P Hildebrand
Search for other papers by P Hildebrand in
Google Scholar
PubMed
Close
,
C Beglinger
Search for other papers by C Beglinger in
Google Scholar
PubMed
Close
,
R Arnold
Search for other papers by R Arnold in
Google Scholar
PubMed
Close
,
B Goke
Search for other papers by B Goke in
Google Scholar
PubMed
Close
, and
M Katschinski
Search for other papers by M Katschinski in
Google Scholar
PubMed
Close

Twelve patients with non-insulin dependent diabetes mellitus (NIDDM) under secondary failure to sulfonylureas were studied to evaluate the effects of subcutaneous glucagon-like peptide-1(7-36)amide (GLP-1) on (a) the gastric emptying pattern of a solid meal (250 kcal) and (b) the glycemic and endocrine responses to this solid meal and an oral glucose tolerance test (OGTT, 300 kcal). 0.5 nmol/kg of GLP-1 or placebo were subcutaneously injected 20 min after meal ingestion. GLP-1 modified the pattern of gastric emptying by prolonging the time to reach maximal emptying velocity (lag period) which was followed by an acceleration in the post-lag period. The maximal emptying velocity and the emptying half-time remained unaltered. With both meals, GLP-1 diminished the postprandial glucose peak, and reduced the glycemic response during the first two postprandial hours by 54.5% (solid meal) and 32.7% (OGTT) (P < 0.05). GLP-1 markedly stimulated insulin secretion with an effect lasting for 105 min (solid meal) or 150 min (OGTT). The postprandial increase of plasma glucagon was abolished by GLP-1. GLP-1 diminished the postprandial release of pancreatic polypeptide. The initial and transient delay of gastric emptying, the enhancement of postprandial insulin release, and the inhibition of postprandial glucagon release were independent determinants (P < 0.002) of the postprandial glucose response after subcutaneous GLP-1. An inhibition of efferent vagal activity may contribute to the inhibitory effect of GLP-1 on gastric emptying.

Free access