Search Results

You are looking at 1 - 7 of 7 items for

  • Author: B Liu x
Clear All Modify Search
Restricted access

HIN-CHING LIU and R. B. MANEELY

SUMMARY

The adrenal histology of Chelonia amyda is described and emphasis placed upon the interpenetration of the interrenal and chromaffin tissues and on their structural relationships with the vascular endothelium. Diastase-resistant polysaccharide complexes are present within the chromaffin-reactive cells. Alkaline glycerophosphatase is absent from the interrenal tissues but present in the chromaffin tissues, especially in the intercellular material.

Free access

C R Liu, L Y Li, F Shi, X Y Zang, Y M Liu, Y Sun and B H Kan

Thyroid dysfunction is classified into hyperthyroidism and congenital hypothyroidism (CH). Both hyperthyroidism and CH can cause heart lesions; however, the mechanisms involved remain unclear. The left ventricle was collected from eu-, hyper-, and hypothyroid rat. RNA was extracted and reverse-transcripted to cDNA. Real-time fluorescence quantitation-PCR was used to quantify the differential expression of thyroid hormone receptor (TR) subtype mRNA among eu-, hyper-, and hypothyroid rat myocardium. Here, we show that compared with the normal myocardium, TRα1 mRNA expression was upregulated by 51% (P<0.01), TRα2 mRNA expression was downregulated by 58% (P<0.01), and TRβ1 mRNA expression remained unchanged in hyperthyroid rat myocardium (P>0.05). TRα1, TRα2, and TRβ1 were expressed in normal and hypothyroid rat myocardium throughout the developmental process. In hypothyroid rats, myocardial TRα1 mRNA expression was generally downregulated and the expression peak appeared late. Myocardial TRα2 mRNA expression was generally upregulated and the expression peak appeared late. Myocardial TRβ1 mRNA expression was generally downregulated and changed similarly with the control group. In addition, the hypogenetic myocardium can be seen in the hypothyroid rat by pathology study. Taken together, the abnormal expression of TR subtype mRNA may have a close relationship with the pathogenesis of CH and hyperthyroidism heart disease.

Free access

Hongbin Liu, Anthony E Dear, Lotte B Knudsen and Richard W Simpson

Glucagon-like peptide-1 (GLP-1) administration attenuates endothelial cell dysfunction in diabetic patients and inhibits tumour necrosis factor α (TNF)-mediated plasminogen activator inhibitor type-1 (PAI-1) induction in human vascular endothelial cells. The short half-life of GLP-1 mediated via degradation by the enzyme dipeptidyl peptidase 4 mandates the clinical use of long-acting GLP-1 analogues. The effects of a long-acting GLP-1 analogue on PAI-1 and vascular adhesion molecule expression in vascular endothelial cells are unknown. In this report, we demonstrate for the first time that the treatment with liraglutide, a long-acting GLP-1 analogue, inhibited TNF or hyperglycaemia-mediated induction of PAI-1, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 mRNA and protein expression in a human vascular endothelial cell line. In addition, treatment attenuated TNF- or hyperglycaemia-mediated induction of the orphan nuclear receptor Nur77 mRNA expression. Taken together, these observations indicate that liraglutide inhibits TNF- or glucose-mediated induction of PAI-1 and vascular adhesion molecule expression, and this effect may involve the modulation of NUR77. These effects suggest that liraglutide may potentially improve the endothelial cell dysfunction associated with premature atherosclerosis identified in type 2 diabetic patients.

Free access

Y L Bao, K Tsuchida, B Liu, A Kurisaki, T Matsuzaki and H Sugino

Activin has previously been shown to act as a nerve cell survival factor and to have neurotrophic effects on neurons. However, the role of activin in regulating neurotransmitter expression in the central nervous system and the exact mechanisms involved in this process are poorly understood. In the present study, we report that activin A and basic fibroblast growth factor (bFGF) synergistically increased the protein level of tyrosine hydroxylase (TH), and also greatly increased the TH mRNA level, in both mouse E14 striatal primary cell cultures and the hippocampal neuronal cell line HT22. Activin A and bFGF cooperatively stimulated nuclear translocation of Smad3 and specifically activated ERK1/2, but not p38 or JNK. Interestingly, a specific inhibitor for MEK, U0126, efficiently blocked the induction of TH promoter activity by activin A and bFGF, indicating that activin A collaborated with bFGF signaling to induce the TH gene through selective activation of ERK-type MAP kinase in mouse striatal and HT22 cells. These data suggest that activin A may act in concert with bFGF for the development of TH-positive neurons.

Free access

G Dai, D Wang, B Liu, JW Kasik, H Muller, RA White, GS Hummel and MJ Soares

The prolactin (PRL) family consists of a collection of genes expressed in the uterus, placenta and anterior pituitary. These cytokines/hormones participate in the control of maternal-fetal adaptations to pregnancy. In this report, we establish the presence of three new members of the PRL family. Novel expressed sequence tags (ESTs) with homology to PRL were isolated from embryonic and placental cDNA libraries. The cDNAs were sequenced and compared with those of other members of the PRL family. The three new cDNAs were assigned to the PRL family on the basis of sequence similarities and were referred to as PRL-like protein-J (PLP-J), PRL-like protein-K (PLP-K) and PRL-like protein-M (PLP-M). Both rat and mouse PLP-J cDNAs were identified. Rat PLP-J cDNA encodes for a predicted 211 amino acid protein containing a 29 amino acid signal peptide and two putative N-linked glycosylation sites, whereas the mouse PLP-J cDNA encodes for a 212 amino acid protein containing a 29 amino acid signal peptide with a single N-linked glycosylation site. Rat and mouse PLP-J proteins share approximately 79% and 70% nucleotide and amino acid sequence identity, respectively. A full-length rat PLP-K cDNA and a partial tentative mouse PLP-K cDNA were identified. The rat PLP-K cDNA encodes for a predicted 228 amino acid protein containing a 31 amino acid signal peptide and one putative N-linked glycosylation site; the mouse PLP-M cDNA encodes for a predicted 228 amino acid protein containing a 28 amino acid signal peptide and one putative N-linked glycosylation site. Genes for PLP-J, PLP-K and PLP-M are situated at the Prl family locus on mouse chromosome 13. PLP-J was exclusively expressed in decidual tissue from both the mouse and rat. PLP-K was expressed in trophoblast cells of the chorioallantoic placenta and showed an apparent species difference. In the mouse, virtually all trophoblast lineages expressed PLP-K, whereas in the rat, PLP-K expression was restricted to the labyrinthine trophoblast cells. Mouse PLP-M expression was restricted to the junctional zone of the chorioallantoic placenta. In summary, we have identified three new members of the rodent PRL gene family that are expressed in uterine and placental structures. Future experimentation is needed to determine the specific roles of each of these ligands in the biology of pregnancy.

Free access

Hong-Wei Wang, Michelle Muguira, Wei-Dong Liu, Tao Zhang, Chiachen Chen, Rebecca Aucoin, Mary B Breslin and Michael S Lan

In this study, an insulinoma-associated antigen-1 (INSM1)-binding site in the proximal promoter sequence of the insulin gene was identified. The co-transfection of INSM1 with rat insulin I/II promoter-driven reporter genes exhibited a 40–50% inhibitory effect on the reporter activity. Mutational experiments were performed by introducing a substitution, GG to AT, into the INSM1 core binding site of the rat insulin I/II promoters. The mutated insulin promoter exhibited a three- to 20-fold increase in the promoter activity over the wild-type promoter in several insulinoma cell lines. Moreover, INSM1 overexpression exhibited no inhibitory effect on the mutated insulin promoter. Chromatin immunoprecipitation assays using βTC-1, mouse fetal pancreas, and Ad-INSM1-transduced human islets demonstrated that INSM1 occupies the endogenous insulin promoter sequence containing the INSM1-binding site in vivo. The binding of the INSM1 to the insulin promoter could suppress ∼50% of insulin message in human islets. The mechanism for transcriptional repression of the insulin gene by INSM1 is mediated through the recruitment of cyclin D1 and histone deacetylase-3 to the insulin promoter. Anti-INSM1 or anti-cyclin D1 morpholino treatment of fetal mouse pancreas enhances the insulin promoter activity. These data strongly support the view that INSM1 is a new zinc-finger transcription factor that modulates insulin gene transcription during early pancreas development.

Free access

Yi Zhang, Yunfeng Liu, Jihong Qu, Alexandre Hardy, Nina Zhang, Jingyu Diao, Paul J Strijbos, Robert Tsushima, Richard B Robinson, Herbert Y Gaisano, Qinghua Wang and Michael B Wheeler

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate pacemaker activity in some cardiac cells and neurons. In the present study, we have identified the presence of HCN channels in pancreatic β-cells. We then examined the functional characterization of these channels in β-cells via modulating HCN channel activity genetically and pharmacologically. Voltage-clamp experiments showed that over-expression of HCN2 in rat β-cells significantly increased HCN current (I h), whereas expression of dominant-negative HCN2 (HCN2-AYA) completely suppressed endogenous I h. Compared to control β-cells, over-expression of I h increased insulin secretion at 2.8 mmol/l glucose. However, suppression of I h did not affect insulin secretion at both 2.8 and 11.1 mmol/l glucose. Current-clamp measurements revealed that HCN2 over-expression significantly reduced β-cell membrane input resistance (R in), and resulted in a less-hyperpolarizing membrane response to the currents injected into the cell. Conversely, dominant negative HCN2-AYA expression led to a substantial increase of R in, which was associated with a more hyperpolarizing membrane response to the currents injected. Remarkably, under low extracellular potassium conditions (2.5 mmol/l K+), suppression of I h resulted in increased membrane hyperpolarization and decreased insulin secretion. We conclude that I h in β-cells possess the potential to modulate β-cell membrane potential and insulin secretion under hypokalemic conditions.