Peroxisome proliferator-activated receptor gamma (PPARgamma), a fatty acid-activated nuclear receptor, is implicated in adipocyte differentiation and insulin sensitisation. In view of the association of dietary fat intake and bowel disease, the expression of PPARgamma in rodent and human intestine was studied. Expression of PPARgamma mRNA was examined by Northern blot hybridisation, RNase protection, and/or competitive RT-PCR assays, whereas PPARgamma protein levels were evaluated by immunoblotting and immunohistochemistry. PPARgamma mRNA and protein were abundantly expressed in colon relative to the small intestine both in rodents and in man. Interestingly, expression of PPARgamma was primarily localised in the more differentiated epithelial cells in the colon. The level of expression of PPARgamma in colon was similar to the levels seen in adipose tissue. Expression of PPARgamma increased from proximal to distal segments of the colon in man. In Caco-2 and HT-29 human adenocarcinoma cells, PPARgamma expression increased upon differentiation, consistent with PPARgamma being associated with a differentiated epithelial phenotype. High-level expression of PPARgamma was observed in the colon, but not in the small intestine, suggesting a potential role of this nuclear receptor in the colon.
Search Results
You are looking at 1 - 2 of 2 items for
- Author: B Paulweber x
- Refine by Access: All content x
M Lefebvre, B Paulweber, L Fajas, J Woods, C McCrary, JF Colombel, J Najib, JC Fruchart, C Datz, H Vidal, P Desreumaux, and J Auwerx
E More, T Fellner, H Doppelmayr, C Hauser-Kronberger, N Dandachi, P Obrist, F Sandhofer, and B Paulweber
Growth factors are essential for cellular growth and differentiation in both normal and malignant human breast epithelial cells. In the present study we investigated the effect of epidermal growth factor (EGF), transforming growth factor alpha (TGFalpha) and phorbol myristate acetate (PMA) on chicken ovalbumin upstream promoter-transcription factor (COUP-TF) expression in human breast cancer cells. The orphan receptors COUP-TFI and COUP-TFII are members of the nuclear receptor superfamily. The high degree of evolutionary conservation of these proteins strongly argues for an important biological function. COUP-TF expression was highest in SK-BR3 cells (approximately 130 amol/ micro g total RNA), while the lowest COUP-TF expression was observed in MCF-7 cells (3.5 amol/ micro g total RNA). While treatment of EGF, TGFalpha and PMA induced expression of COUP-TFII, COUP-TFI did not respond to these agents. Oncostatin M (OSM) is known to exert an antiproliferative effect in breast cancer cells. Treatment of MCF-7 cells with OSM resulted in an approximately 90% reduction of COUP-TFII mRNA expression. In SK-BR3 cells, treatment with the MEK inhibitor UO126 resulted in a profound suppression of endogenous COUP-TFII expression. Furthermore, cotreatment with UO126 prevented induction of COUP-TFII expression by EGF in MCF-7 cells. In conclusion, our data provide evidence, for the first time, that mitogenic substances which activate the MAP kinase pathway, can induce COUP-TFII expression. Our results strongly suggest that an active MAP kinase pathway is essential for COUP-TFII expression in human breast cancer cells.