Search Results
You are looking at 1 - 3 of 3 items for
- Author: B Portha x
- Refine by access: All content x
Search for other papers by B. PORTHA in
Google Scholar
PubMed
Search for other papers by L. PICON in
Google Scholar
PubMed
Search for other papers by G. ROSSELIN in
Google Scholar
PubMed
*Laboratoire de Physiologie du Développement, Tour 23/33, Université Paris VII, 2 Place Jussieu, 75005 Paris, France and †Unité de Recherches de Diabétologie et d'Etudes Radio-Immunologlques des Hormones Protéiques, U.55 (INSERM), Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75012 Paris, France
(Received 1 November 1977)
Experimental prolonged gestation in the rat results in a reduction in the amounts of insulin and glucagon accumulated in the pancreas, a low level of insulin in the plasma and a sharp depletion of hepatic glycogen stores (Portha, Rosselin & Picon, 1976). Moreover, in the liver of the postmature foetus the activities of the main glyconeogenic enzymes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, are increased (Portha, Le Provost, Picon & Rosselin, 1978). The present study was undertaken to investigate the effects of glucagon in the circulation on these processes.
Gestation was prolonged by s.c. administration of progesterone to the mother (2·5 mg/rat) once daily on days 20·5, 21·5
Search for other papers by JC Marie in
Google Scholar
PubMed
Search for other papers by D Bailbe in
Google Scholar
PubMed
Search for other papers by E Gylfe in
Google Scholar
PubMed
Search for other papers by B Portha in
Google Scholar
PubMed
We examined to what extent the abnormal glucose-dependent insulin secretion observed in NIDDM (non-insulin-dependent diabetes mellitus) is related to alterations in the handling of cytosolic Ca2+ of islets of Langerhans. Using two recognized rat models of NIDDM, the GK (Goto-Kakizaki) spontaneous model and the nSTZ (neonatal streptozotocin) induced model, we could detect several common alterations in the glucose-induced [Ca2+]i cytosolic responses. First, the initial reduction of [Ca2+]i following high glucose (16.7 mM) observed routinely in islets obtained from non-diabetic Wistar rats could not be detected in GK and nSTZ islets. Second, a delayed response for glucose to induce a subsequent 3% increase of [Ca2+]i over basal level was observed in both GK (321+/-40 s, n=11) and nSTZ (326+/-38 s, n=13) islets as compared with Wistar islets (198+/-20 s, n=11), values representing means+/-s.e.m. Third, the rate of increase in [Ca2+]i in response to a high glucose challenge was 25% and 40% lower in GK and nSTZ respectively, as compared with Wistar islets. Fourth, the maximal [Ca2+](i) level reached after 10 min of perifusion with 16.7 mM glucose was lower with GK and nSTZ islets and represented respectively 60% and 90% of that of Wistar islets. Further, thapsigargin, a blocker of Ca2+/ATPases (SERCA), abolished the initial reduction in [Ca2+]i observed in response to high glucose and induced fast [Ca2+]i oscillations with high amplitude in Wistar islets. The latter effect was not seen in GK and nSTZ islets. In these two NIDDM models, several common alterations in glucose-induced Ca2+ handling were revealed which may contribute to their poor glucose-induced insulin secretion.
Search for other papers by N Dachicourt in
Google Scholar
PubMed
Search for other papers by P Serradas in
Google Scholar
PubMed
Search for other papers by D Bailbe in
Google Scholar
PubMed
Search for other papers by M Kergoat in
Google Scholar
PubMed
Search for other papers by L Doare in
Google Scholar
PubMed
Search for other papers by B Portha in
Google Scholar
PubMed
The effects of glucagon-like peptide-1(7-36)-amide (GLP-1) on cAMP content and insulin release were studied in islets isolated from diabetic rats (n0-STZ model) which exhibited impaired glucose-induced insulin release. We first examined the possibility of re-activating the insulin response to glucose in the beta-cells of the diabetic rats using GLP-1 in vitro. In static incubation experiments, GLP-1 amplified cAMP accumulation (by 170%) and glucose-induced insulin release (by 140%) in the diabetic islets to the same extent as in control islets. Using a perifusion procedure, GLP-1 amplified the insulin response to 16.7 mM glucose by diabetic islets and generated a clear biphasic pattern of insulin release. The incremental insulin response to glucose in the presence of GLP-1, although lower than corresponding control values (1.56 +/- 0.37 and 4.53 +/- 0.60 pg/min per ng islet DNA in diabetic and control islets respectively), became similar to that of control islets exposed to 16.7 mM glucose alone (1.09 +/- 0.15 pg/min per ng islet DNA). Since in vitro GLP-1 was found to exert positive effects on the glucose competence of the residual beta-cells in the n0-STZ model. we investigated the therapeutic effect of in vivo GLP-1 administration on glucose tolerance and glucose-induced insulin release by n0-STZ rats. An infusion of GLP-1 (10 ng/min per kg; i.v.) in n0-STZ rats enhanced significantly (P < 0.01) basal plasma insulin levels, and, when combined with an i.v. glucose tolerance and insulin secretion test, it was found to improve (P < 0.05) glucose tolerance and the insulinogenic index, as compared with the respective values of these parameters before GLP-1 treatment.