Search Results

You are looking at 1 - 2 of 2 items for

  • Author: BW Gallaher x
  • Refine by Access: All content x
Clear All Modify Search
Free access

EC Jensen, BW Gallaher, BH Breier, and JE Harding

Exposure of the fetus to excess maternal glucocorticoids has been postulated to alter fetal growth and development, and thus provide a possible mechanism for the link between impaired fetal growth and altered postnatal physiology. However, the effects of exposure to excess maternal glucocorticoids on fetal physiology and metabolism in utero have not been described. We therefore studied the effects of chronic maternal cortisol infusion on fetal growth, blood pressure, metabolism and endocrine status in chronically catheterised fetal sheep. We infused hydrocortisone (80 mg/day, n=6) or saline (n=8) for 10 days into the pregnant ewes beginning at 119 days of gestation. Maternal cortisol infusion reduced fetal growth rate by 30% (girth increment 2.9+/-0.3 vs 1.8+/-0.4 mm/day, P=0.03). Maternal cortisol infusion increased fetal heart weight by 15% relative to body weight and increased ventricular wall thickness by 30% in the left and 50% in the right ventricle. The weight of the spleen was reduced by 30% and placental weight reduced by 25%. Fetal blood pressure increased by approximately 10 mmHg (20%) during maternal cortisol infusion. Maternal cortisol infusion did not alter amino-nitrogen concentrations. However, maternal lactate concentrations increased by 80% and fetal lactate concentrations increased by 74% with maternal cortisol infusion, and both maternal and fetal urea concentrations increased by 40%. Circulating maternal IGF-binding protein (IGFBP)-3 levels had increased by 20% by the end of the maternal cortisol infusion. Fetal IGF-I concentrations decreased during cortisol infusion and fetal IGFBP-1 concentrations were negatively correlated with fetal weight (r=-0.76, P=0.02). We conclude that even a modest elevation of maternal cortisol levels affects fetal growth, cardiovascular function, metabolism and endocrine status which may have long-term consequences.

Free access

BW Gallaher, BH Breier, CL Keven, JE Harding, and PD Gluckman

It has been demonstrated in several animal models that undernutrition in utero has significant long lasting effects on subsequent fetal and postnatal development. To address the hypothesis that the insulin-like growth factors (IGFs) may mediate such effects, our study examined whether a period of periconceptual maternal undernutrition could have a lasting influence on the IGF axis in the fetal sheep. Ewes were either allowed to feed ad libitum or kept undernourished from day 60 prior to mating until day 30 after conception, and then both groups were allowed to feed ad libitum. These groups were further divided at day 105 of gestation, either being fed ad libitum or undernourished until day 115 of gestation. Fetal and maternal blood samples were obtained at both day 105 and 115 of gestation. We describe the development of a specific homologous RIA to measure ovine IGF-binding protein-3 (IGFBP-3) in fetal and maternal sheep plasma. Fetal plasma IGFBP-3 and IGF-I concentrations were significantly (P<0.05) reduced at day 115 of gestation after maternal undernutrition. The fetal plasma IGFBP-2 levels were unchanged. The degree of reduction in fetal plasma IGFBP-3 and IGF-I between day 105 and 115 of gestation as a response to acute maternal undernutrition was significantly greater (P<0.05) in fetuses of mothers receiving low periconceptual nutrition. The response of maternal plasma IGFBP-3 and IGF-I to undernutrition did not depend on the level of periconceptual nutrition. Western blot data indicate that changes in either maternal or fetal plasma IGFBP-3 concentrations were not the result of increased proteolytic activity. These results suggest that exposure to maternal periconceptual undernutrition reprograms IGFBP-3 and IGF-I regulation in the developing sheep fetus, altering its response to undernutrition in late gestation.