Search Results
You are looking at 1 - 2 of 2 items for
- Author: Berenice Bilharinho Mendonca x
- Refine by access: All content x
Unidade de Suprarrenal, Instituto do Câncer de São Paulo ICESP, Département de Médecine, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
Search for other papers by Maria Candida Barisson Villares Fragoso in
Google Scholar
PubMed
Search for other papers by Guilherme Asmar Alencar in
Google Scholar
PubMed
Search for other papers by Antonio Marcondes Lerario in
Google Scholar
PubMed
Search for other papers by Isabelle Bourdeau in
Google Scholar
PubMed
Unidade de Suprarrenal, Instituto do Câncer de São Paulo ICESP, Département de Médecine, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
Search for other papers by Madson Queiroz Almeida in
Google Scholar
PubMed
Search for other papers by Berenice Bilharinho Mendonca in
Google Scholar
PubMed
Search for other papers by André Lacroix in
Google Scholar
PubMed
ACTH-independent macronodular adrenal hyperplasia is a rare cause of Cushing's syndrome (CS), accounting for <2% of all endogenous CS cases; however it is more frequently identified incidentally with sub-clinical cortisol secretion. Recently, cortisol secretion has been shown to be regulated by ectopic corticotropin, which is in turn produced by clusters of steroidogenic cells of the hyperplastic adrenal nodules. Hence, the term ‘ACTH-independent’ is not entirely appropriate for this disorder. Accordingly, the disease is designated primary macronodular adrenal hyperplasia (PMAH) in this review article. The means by which cortisol production is regulated in PMAH despite the suppressed levels of ACTH of pituitary origin is exceedingly complex. Several molecular events have been proposed to explain the enhanced cortisol secretion, increased cell proliferation, and nodule formation in PMAH. Nonetheless, the precise sequence of events and the molecular mechanisms underlying this condition remain unclear. The purpose of this review is therefore to present new insights on the molecular and genetic profile of PMAH pathophysiology, and to discuss the implications for disease progression.
Search for other papers by Marcia Helena Soares Costa in
Google Scholar
PubMed
Search for other papers by Ana Claudia Latronico in
Google Scholar
PubMed
Search for other papers by Regina Matsunaga Martin in
Google Scholar
PubMed
Search for other papers by Angela S Barbosa in
Google Scholar
PubMed
Search for other papers by Madson Q Almeida in
Google Scholar
PubMed
Search for other papers by Claudimara Ferini Pacicco Lotfi in
Google Scholar
PubMed
Search for other papers by Helena P Lima Valassi in
Google Scholar
PubMed
Search for other papers by Mirian Yumie Nishi in
Google Scholar
PubMed
Search for other papers by Antonio Marmo Lucon in
Google Scholar
PubMed
Search for other papers by Sheila Aparecida Siqueira in
Google Scholar
PubMed
Search for other papers by Maria Claudia Nogueira Zerbini in
Google Scholar
PubMed
Search for other papers by Luciani Renata Carvalho in
Google Scholar
PubMed
Search for other papers by Berenice Bilharinho Mendonca in
Google Scholar
PubMed
Search for other papers by Maria Candida Barisson Villares Fragoso in
Google Scholar
PubMed
Glucose-dependent insulinotropic peptide receptor (GIPR) and LHCGR are G-protein-coupled receptors with a wide tissue expression pattern. Aberrant expression of these receptors has rarely been demonstrated in adult sporadic adrenocortical tumors with a lack of data on pediatric tumors. We quantified the GIPR and LHCGR expression in a large cohort of 55 patients (25 children and 30 adults) with functioning and non-functioning sporadic adrenocortical tumors. Thirty-eight tumors were classified as adenomas whereas 17 were carcinomas. GIPR and LHCGR expression were analyzed by real-time PCR and normal human pancreatic and testicular tissue samples were used as positive controls. Mean expression values were determined by fold increase in comparison with a normal adrenal pool. GIPR mRNA levels were significantly higher in adrenocortical carcinomas than in adenomas from both pediatric and adult groups. LHCGR expression was similar in both carcinomas and adenomas from the pediatric group but significantly lower in carcinomas than in adenomas from the adult group (median 0.06 and 2.3 respectively, P<0.001). GIPR was detected by immunohistochemistry in both pediatric and adult tumors. Staining and real-time PCR results correlated positively only when GIPR mRNA levels were increased at least two-fold in comparison with normal adrenal expression levels. In conclusion, GIPR overexpression was observed in pediatric and adult adrenocortical tumors and very low levels of LHCGR expression were found in all adult adrenocortical carcinomas.