Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Bruno Moulin de Andrade x
  • Refine by access: All content x
Clear All Modify Search
Elaine Cristina Lima de Souza Laboratório de Fisiologia Endócrina Doris Rosenthal, Serviço de Endocrinologia, Laboratório de Interações Celulares do Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho

Search for other papers by Elaine Cristina Lima de Souza in
Google Scholar
PubMed
Close
,
Álvaro Souto Padrón Laboratório de Fisiologia Endócrina Doris Rosenthal, Serviço de Endocrinologia, Laboratório de Interações Celulares do Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho

Search for other papers by Álvaro Souto Padrón in
Google Scholar
PubMed
Close
,
William Miranda Oliveira Braga Laboratório de Fisiologia Endócrina Doris Rosenthal, Serviço de Endocrinologia, Laboratório de Interações Celulares do Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho

Search for other papers by William Miranda Oliveira Braga in
Google Scholar
PubMed
Close
,
Bruno Moulin de Andrade Laboratório de Fisiologia Endócrina Doris Rosenthal, Serviço de Endocrinologia, Laboratório de Interações Celulares do Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho

Search for other papers by Bruno Moulin de Andrade in
Google Scholar
PubMed
Close
,
Mário Vaisman Laboratório de Fisiologia Endócrina Doris Rosenthal, Serviço de Endocrinologia, Laboratório de Interações Celulares do Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho

Search for other papers by Mário Vaisman in
Google Scholar
PubMed
Close
,
Luiz Eurico Nasciutti Laboratório de Fisiologia Endócrina Doris Rosenthal, Serviço de Endocrinologia, Laboratório de Interações Celulares do Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho

Search for other papers by Luiz Eurico Nasciutti in
Google Scholar
PubMed
Close
,
Andrea Claudia Freitas Ferreira Laboratório de Fisiologia Endócrina Doris Rosenthal, Serviço de Endocrinologia, Laboratório de Interações Celulares do Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho

Search for other papers by Andrea Claudia Freitas Ferreira in
Google Scholar
PubMed
Close
, and
Denise Pires de Carvalho Laboratório de Fisiologia Endócrina Doris Rosenthal, Serviço de Endocrinologia, Laboratório de Interações Celulares do Programa de Pesquisa em Biologia Celular e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho

Search for other papers by Denise Pires de Carvalho in
Google Scholar
PubMed
Close

Phosphoinositide-3-kinase (PI3K) inhibition increases functional sodium iodide symporter (NIS) expression in both FRTL-5 rat thyroid cell line and papillary thyroid cancer lineages. In several cell types, the stimulation of PI3K results in downstream activation of the mechanistic target of rapamycin (MTOR), a serine–threonine protein kinase that is a critical regulator of cellular metabolism, growth, and proliferation. MTOR activation is involved in the regulation of thyrocyte proliferation by TSH. Here, we show that MTOR inhibition by rapamycin increases iodide uptake in TSH-stimulated PCCL3 thyroid cell line, although the effect of rapamycin was less pronounced than PI3K inhibition. Thus, NIS inhibitory pathways stimulated by PI3K might also involve the activation of proteins other than MTOR. Insulin downregulates iodide uptake and NIS protein expression even in the presence of TSH, and both effects are counterbalanced by MTOR inhibition. NIS protein expression levels were correlated with iodide uptake ability, except in cells treated with TSH in the absence of insulin, in which rapamycin significantly increased iodide uptake, while NIS protein levels remained unchanged. Rapamycin avoids the activation of both p70 S6 and AKT kinases by TSH, suggesting the involvement of MTORC1 and MTORC2 in TSH effect. A synthetic analog of rapamycin (everolimus), which is clinically used as an anticancer agent, was able to increase rat thyroid iodide uptake in vivo. In conclusion, we show that MTOR kinase participates in the control of thyroid iodide uptake, demonstrating that MTOR not only regulates cell survival, but also normal thyroid cell function both in vitro and in vivo.

Free access
Alvaro Souto Padron Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by Alvaro Souto Padron in
Google Scholar
PubMed
Close
,
Ruy Andrade Louzada Neto Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil
Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by Ruy Andrade Louzada Neto in
Google Scholar
PubMed
Close
,
Thiago Urgal Pantaleão Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by Thiago Urgal Pantaleão in
Google Scholar
PubMed
Close
,
Maria Carolina de Souza dos Santos Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by Maria Carolina de Souza dos Santos in
Google Scholar
PubMed
Close
,
Renata Lopes Araujo Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by Renata Lopes Araujo in
Google Scholar
PubMed
Close
,
Bruno Moulin de Andrade Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by Bruno Moulin de Andrade in
Google Scholar
PubMed
Close
,
Monique da Silva Leandro Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by Monique da Silva Leandro in
Google Scholar
PubMed
Close
,
João Pedro Saar Werneck de Castro Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by João Pedro Saar Werneck de Castro in
Google Scholar
PubMed
Close
,
Andrea Claudia Freitas Ferreira Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by Andrea Claudia Freitas Ferreira in
Google Scholar
PubMed
Close
, and
Denise Pires de Carvalho Laboratório de Fisiologia Endócrina Doris Rosenthal, Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho and Instituto de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAM), CCS-Bloco G- Cidade Universitria, Ilha do Fundo, Rio de Janeiro 21949-900, Brazil

Search for other papers by Denise Pires de Carvalho in
Google Scholar
PubMed
Close

In general, 3,5-diiodothyronine (3,5-T2) increases the resting metabolic rate and oxygen consumption, exerting short-term beneficial metabolic effects on rats subjected to a high-fat diet. Our aim was to evaluate the effects of chronic 3,5-T2 administration on the hypothalamus–pituitary–thyroid axis, body mass gain, adipose tissue mass, and body oxygen consumption in Wistar rats from 3 to 6 months of age. The rats were treated daily with 3,5-T2 (25, 50, or 75 μg/100 g body weight, s.c.) for 90 days between the ages of 3 and 6 months. The administration of 3,5-T2 suppressed thyroid function, reducing not only thyroid iodide uptake but also thyroperoxidase, NADPH oxidase 4 (NOX4), and thyroid type 1 iodothyronine deiodinase (D1 (DIO1)) activities and expression levels, whereas the expression of the TSH receptor and dual oxidase (DUOX) were increased. Serum TSH, 3,3′,5-triiodothyronine, and thyroxine were reduced in a 3,5-T2 dose-dependent manner, whereas oxygen consumption increased in these animals, indicating the direct action of 3,5-T2 on this physiological variable. Type 2 deiodinase activity increased in both the hypothalamus and the pituitary, and D1 activities in the liver and kidney were also increased in groups treated with 3,5-T2. Moreover, after 3 months of 3,5-T2 administration, body mass and retroperitoneal fat pad mass were significantly reduced, whereas the heart rate and mass were unchanged. Thus, 3,5-T2 acts as a direct stimulator of energy expenditure and reduces body mass gain; however, TSH suppression may develop secondary to 3,5-T2 administration.

Open access
Renata Lopes Araujo
Search for other papers by Renata Lopes Araujo in
Google Scholar
PubMed
Close
,
Bruno Moulin de Andrade
Search for other papers by Bruno Moulin de Andrade in
Google Scholar
PubMed
Close
,
Álvaro Souto Padron de Figueiredo
Search for other papers by Álvaro Souto Padron de Figueiredo in
Google Scholar
PubMed
Close
,
Monique Leandro da Silva
Search for other papers by Monique Leandro da Silva in
Google Scholar
PubMed
Close
,
Michelle Porto Marassi
Search for other papers by Michelle Porto Marassi in
Google Scholar
PubMed
Close
,
Valmara dos Santos Pereira
Search for other papers by Valmara dos Santos Pereira in
Google Scholar
PubMed
Close
,
Eliete Bouskela Laboratório de Fisiologia Endócrina do Instituto de Biofísica Carlos Chagas Filho, Laboratório de Pesquisas em Microcirculação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP 21949-900, Brazil

Search for other papers by Eliete Bouskela in
Google Scholar
PubMed
Close
, and
Denise P Carvalho
Search for other papers by Denise P Carvalho in
Google Scholar
PubMed
Close

During food restriction, decreased basal metabolic rate secondary to reduced serum thyroid hormones levels contributes to weight loss resistance. Thyroxine (T4) and 3,3′,5-tri-iodothyronine (T3) administration during caloric restriction produce deleterious side effects; however, the administration of physiological doses of T4 during food restriction has never been evaluated. The aim of this study was to analyze the effects of low replacement doses of T4 in Wistar rats subjected to 40% food restriction. Food restriction for 30 days led to significantly reduced liver type 1 deiodinase activity, serum TSH, leptin, T4, T3, metabolic rate, and body mass. The significant reduction in hepatic deiodinase activity found during food restriction was normalized in a dose-dependent manner by T4 replacement, showing that decreased type 1 deiodinase (D1) activity is secondary to decreased serum thyroid hormone levels during caloric restriction. The lowest replacement dose of T4 did not normalize resting metabolic rate, but was able to potentiate the effects of food restriction on carcass fat loss and did not spare body protein. The highest dose of T4 produced a normalization of daily oxygen consumption and determined a significant reduction in both carcass fat and protein content. Our results show that serum T4 normalization during food restriction restores serum T3 and liver D1 activity, while body protein is not spared. Thus, decreased serum T4 during caloric restriction corresponds to a protective mechanism to avoid body protein loss, highlighting the importance of other strategies to reduce body mass without lean mass loss.

Free access