Search Results

You are looking at 1 - 2 of 2 items for

  • Author: C Beaudoin x
  • Refine by access: All content x
Clear All Modify Search
C Beaudoin
Search for other papers by C Beaudoin in
Google Scholar
PubMed
Close
,
CH Blomquist
Search for other papers by CH Blomquist in
Google Scholar
PubMed
Close
,
M Bonenfant
Search for other papers by M Bonenfant in
Google Scholar
PubMed
Close
, and
Y Tremblay
Search for other papers by Y Tremblay in
Google Scholar
PubMed
Close

We have investigated the expression of cholesterol side-chain cleavage cytochrome P450 (P450scc) and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) type 1 genes during human trophoblast differentiation in culture and the modulation of their steady-state mRNA levels by steroids. During the first 24 to 48 h after plating, mononucleated cells aggregated, forming colonies. After 60 h in culture, cell diameters were increased and nuclei appeared centrally distributed within large cells, consistent with syncytiotrophoblast formation. During these striking morphological changes in culture the expression and activity levels of 3 beta-HSD type 1 and P450scc increased significantly as isolated cytotrophoblasts progressed to a differentiated state, with P450scc and 3 beta-HSD type 1 mRNAs activities being more abundant in cells cultured for 48 to 72 h. In the same culture, however, the amount of 3 beta-HSD protein decreased during the first 12 to 24 h by 50% compared with freshly isolated trophoblasts but remained at these levels throughout the culture period. The specific activity of the 3 beta-HSD as determined with pregnenolone or dehydroepiandrosterone was similar but increased with time as syncytiotrophoblast was formed in vitro. These observations provide additional evidence that the expression of these two progesterone-synthesizing enzymes is coincident and that they reach their maximum steady-state mRNA levels at a time when syncytium formation occurs in vitro. Incubation of trophoblast cells with progesterone or estradiol increased the abundance of P450scc and 3 beta-HSD type 1 mRNAs but had no significant effect on the amount of 3 beta-HSD protein. These observations of the regulation of 3 beta-HSD type 1 mRNA levels by steroids suggest a complex relationship of the mechanisms regulating transcription/mRNA processing and transduction of the 3 beta-HSD type 1 gene.

Restricted access
C H Blomquist
Search for other papers by C H Blomquist in
Google Scholar
PubMed
Close
,
B S Leung
Search for other papers by B S Leung in
Google Scholar
PubMed
Close
,
C Beaudoin
Search for other papers by C Beaudoin in
Google Scholar
PubMed
Close
,
D Poirier
Search for other papers by D Poirier in
Google Scholar
PubMed
Close
, and
Y Tremblay
Search for other papers by Y Tremblay in
Google Scholar
PubMed
Close

Abstract

There is growing evidence that various isoforms of 17β-hydroxysteroid dehydrogenase (17-HSD) are regulated at the level of catalysis in intact cells. A number of investigators have proposed that the NAD(P)/NAD(P)H ratio may control the direction of reaction. In a previous study, we obtained evidence that A431 cells, derived from an epidermoid carcinoma of the vulva, are enriched in 17-HSD type 2, a membrane-bound isoform reactive with C18 and C19 17β-hydroxysteroids and 17-ketosteroids. The present investigation was undertaken to confirm the presence of 17-HSD type 2 in A431 cells and to assess intracellular regulation of 17-HSD at the level of catalysis by comparing the activity of homogenates and microsomes with that of cell monolayers. Northern blot analysis confirmed the presence of 17-HSD type 2 mRNA. Exposure of cells to epidermal growth factor resulted in an increase in type 2 mRNA and, for microsomes, increases in maximum velocity (V max) with no change in Michaelis constant (K m) for testosterone and androstenedione, resulting in equivalent increases in the V max/K m ratio consistent with the presence of a single enzyme. Initial velocity data and inhibition patterns were consistent with a highly ordered reaction sequence in vitro in which testosterone and androstenedione bind only to either an enzyme–NAD or an enzyme–NADH complex respectively. Microsomal dehydrogenase activity with testosterone was 2- to 3-fold higher than reductase activity with androstenedione. In contrast, although cell monolayers rapidly converted testosterone to androstenedione, reductase activity with androstenedione or dehydroepiandrosterone (DHEA) was barely detectable. Lactate but not glucose, pyruvate or isocitrate stimulated the conversion of androstenedione to testosterone by monolayers, suggesting that cytoplasmic NADH may be the cofactor for 17-HSD type 2 reductase activity with androstenedione. However, exposure to lactate did not result in a significant change in the NAD/NADH ratio of cell monolayers. It appears that within A431 cells 17-HSD type 2 is regulated at the level of catalysis to function almost exclusively as a dehydrogenase. These findings give further support to the concept that 17-HSD type 2 functions in vivo principally as a dehydrogenase and that its role as a reductase in testosterone formation by either the Δ4 or Δ5 pathway is limited.

Journal of Endocrinology (1997) 153, 453–464

Restricted access