Search Results

You are looking at 1 - 3 of 3 items for

  • Author: C Bing x
  • Refine by Access: All content x
Clear All Modify Search
Free access

RG Denis, C Bing, EK Naderali, RG Vernon, and G Williams

We investigated the effects of lactation on diurnal changes in serum leptin and hypothalamic expression of the leptin receptor isoforms, Ob-Ra, -Rb, -Rc, -Re and -Rf in rats. In non-lactating rats, serum leptin concentration was increased at night while hypothalamic mRNA levels of Ob-Rb, -Rc and -Re decreased; by contrast, expression of Ob-Ra and Ob-Rf was unchanged at night. There were significant negative correlations between serum leptin and mRNA expression of Ob-Rb (P<0.001) and Ob-Re (P<0.05), which were independent of time of day. In lactating rats, the nocturnal rise in serum leptin was attenuated. Daytime hypothalamic Ob-Rb mRNA levels were significantly lower than in non-lactating controls, and the normal nocturnal decreases in expression of Ob-Rb, -Rc and -Re were lost. The relationship between serum leptin and Ob-Re expression was not changed by lactation. Lactation had no effect on the expression of Ob-Ra mRNA in the hypothalamus. Decreased daytime Ob-Rb expression could lead to reduced hypothalamic sensitivity to leptin, and thus contribute to increased daytime appetite in lactating rats. Moreover, maintaining high levels of Ob-Re expression could, by increasing hypothalamic leptin-binding protein concentration and reducing local leptin bioavailability, further accentuate hyperphagia. Thus, selective changes in expression of specific isoforms of the leptin receptor may contribute to the hyperphagia of lactation in rats.

Open access

T Mracek, D Gao, T Tzanavari, Y Bao, X Xiao, C Stocker, P Trayhurn, and C Bing

Zinc-α2-glycoprotein (ZAG, also listed as AZGP1 in the MGI Database), a lipid-mobilising factor, has recently been suggested as a potential candidate in the modulation of body weight. We investigated the effect of increased adiposity on ZAG expression in adipose tissue and the liver and on plasma levels in obese (ob/ob) mice compared with lean siblings. The study also examined the effect of the pro-inflammatory cytokine tumour necrosis factor-α (TNFα) on ZAG expression in adipocytes. Zag mRNA levels were significantly reduced in subcutaneous (fourfold) and epididymal (eightfold) fat of ob/ob mice. Consistently, ZAG protein content was decreased in both fat depots of ob/ob mice. In the liver of obese animals, steatosis was accompanied by the fall of both Zag mRNA (twofold) and ZAG protein content (2.5-fold). Plasma ZAG levels were also decreased in obese mice. In addition, Zag mRNA was reduced in epididymal (fivefold) and retroperitoneal (fivefold) adipose tissue of obese (fa/fa) Zucker rats. In contrast to Zag expression, Tnfα mRNA levels were elevated in adipose tissue (twofold) and the liver (2.5-fold) of ob/ob mice. Treatment with TNFα reduced Zag gene expression in differentiated adipocytes, and this inhibition was chronic, occurring at 24 and 48 h following TNFα treatment. It is concluded that ZAG synthesis in adipose tissue and the liver is downregulated, as are its circulating levels, in ob/ob mice. The reduced ZAG production may advance the susceptibility to lipid accumulation in these tissues in obesity, and this could be at least in part attributable to the inhibitory effect of TNFα.

Free access

R G P Denis, C Bing, S Brocklehurst, J A Harrold, R G Vernon, and G Williams

Rats normally eat about 85% of their food at night. Lactation increases food intake 3- to 4-fold, but the diurnal pattern of food intake persists. The mechanisms responsible for the diurnal and lactation-induced changes in food intake are still unresolved, hence we have further investigated the possible roles of serum leptin and hypothalamic expression of neuropeptide Y (NPY), agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) in rats. Suppressor of cytokine signalling-3 (SOCS-3) acts as a feedback inhibitor of leptin signalling in the hypothalamus, hence changes in expression of SOCS-3 were also investigated.

Changes in expression of NPY, AgRP or POMC alone could not account for the diurnal changes in intake and their alteration by lactation. However, there were increased AgRP mRNA:POMC mRNA ratios at night and also during lactation, which were very similar to estimated changes in food intake. Such changes in expression may result in dominance of the orexigenic AgRP peptide over the appetite-suppressing POMC-derived peptides, and so could contribute to the hyperphagia in these states. Diurnal and lactation-related changes in the AgRP mRNA:POMC mRNA ratio and food intake are not due to changes in leptin alone. However, hypoleptinaemia, possibly through increased expression of NPY, may contribute to the hyperphagia of lactation.

In the dark, expression of SOCS-3 was decreased in non-lactating rats; lactation decreased SOCS-3 expression in both light and dark phases. However, such changes are likely to enhance the ability of leptin-responsive neurones to transmit the leptin signal, and so are unlikely to contribute to either the nocturnal increase in appetite or the hyperphagia of lactation.