Search Results

You are looking at 1 - 2 of 2 items for

  • Author: C Rotem x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

R Yacobi, R Koren, U A Liberman, C Rotem, L Wasserman, and A Ravid

Abstract

Renal cell carcinoma is a chemotherapy-resistant tumor which is relatively responsive to immunotherapy. Immunotherapeutic regimes employ interferons or interleukin 2 with or without lymphokine-activated killer cells. Secondary cytokines, induced by interleukin 2 or interferon, may have an important impact on their anti-neoplastic activity. Notable among them is tumor necrosis factor (TNFα). We assessed the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the susceptibility of the human renal cell carcinoma cell line SK-RC-29 to the cytotoxic and cytostatic actions of TNFα, interferon a and lymphokine-activated killer cells. Using uptake of the vital dye neutral red as an indicator of viable cell number, we found that addition of 1,25(OH)2D3 (100 nm) to TNFα (30 ng/ml)-treated cultures resulted in a 2·6 ± 0·2-fold (mean ± s.e.) increase in the cytotoxic effect of the cytokine. The potentiating effect of 1,25(OH)2D3 was dose-dependent, and significant at concentrations equal to or higher than 10 nm. Another dihydroxylated vitamin D metabolite, 24,25(OH)2D3, had no effect on TNFα action. The cytotoxic effect of TNFα increased whereas the potentiation by 1,25(OH)2D3 decreased with cell density in culture. 1,25(OH)2D3, in contrast to its potentiating effect on TNFα action, did not modulate the cytostatic effect of interferon α or the susceptibility of SK-RC-29 to killing by lymphokine-activated killer cells. The findings reported here may explain some of the in vivo anti-tumor activity of 1,25(OH)2D3 and provide a rationale for the employment of active vitamin D analogs during immune anti-cancer therapy.

Journal of Endocrinology (1996) 149, 327–333

Free access

A Ravid, E Rubinstein, A Gamady, C Rotem, UA Liberman, and R Koren

In addition to its known effects on keratinocyte proliferation and differentiation, the hormonal form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), has been shown to protect keratinocytes from UV- and chemotherapy-induced damage. Epidermal keratinocytes contain both the machinery needed to produce 1,25(OH)(2)D(3) and vitamin D receptors. The activation of the stress-activated protein kinases (SAPKs), such as c-Jun N-terminal kinase (JNK) and p38, is an early cellular response to stress signals and an important determinant of cell fate. This study examines whether modulation of these SAPKs is associated with the effects of 1,25(OH)(2)D(3) on keratinocytes under stress. HaCaT keratinocytes were exposed to heat shock, hyperosmotic concentrations of sorbitol, the epidermal growth factor receptor tyrosine kinase inhibitor AG1487, the pro-inflammatory cytokine tumor necrosis factor alpha, and H(2)O(2). These stresses activated both SAPKs. Pretreatment with 1,25(OH)(2)D(3) inhibited the activation of JNK by all stresses and the activation of p38 by heat shock, AG1478 and tumor necrosis factor alpha. Under the same conditions, treatment with 1,25(OH)(2)D(3) protected HaCaT keratinocytes from cytotoxicity induced by exposure to H(2)O(2) and hyperosmotic shock. The effect of 1,25(OH)(2)D(3) was dose-dependent, already apparent at nanomolar concentrations, and time-dependent, maximal after a 24-h pre-incubation. We suggest that inhibition of SAPK activation may account for some of the well-documented protective effects of 1,25(OH)(2)D(3) on epidermal cells during exposure to UV or chemotherapy and may also be related to the anti-inflammatory actions of the hormone in skin.