Search Results

You are looking at 1 - 2 of 2 items for

  • Author: C Suarez x
  • Refine by Access: All content x
Clear All Modify Search
Free access

C Suárez, J Vela, I García-Tornadú, and D Becu-Villalobos

In view of the present controversy related to the potential beneficial effects of clinical dehydroepiandrosterone (DHEA) treatments, and considering our own previous results that reveal an influence of this steroid in pituitary hyperplasia development in vivo in rats, we decided to evaluate the role of DHEA in prolactin and GH secretion, as well as in second messengers involved, in cultured rat anterior pituitary cells. DHEA (1 × 10−5 to 1 × 10−7 M) did not modify basal GH or prolactin release, and a prolactin inhibitory effect was observed only for androstenediol, a metabolite of DHEA. DHEA partially prevented dopamine (1 × 10−6 M)-induced prolactin inhibition and facilitated the prolactin-releasing effect of 10−8 M Ang II, without modifying the resulting Ca2+ i mobilization. Furthermore, DHEA potentiated the GH release and cAMP production induced by 1 × 10−8 M GHRH. Finally, DHEA partially reversed the inhibitory effect of 1 × 10−8 M somatostatin on GH, but not prolactin, release. We conclude that DHEA in vitro, directly or indirectly through conversion into metabolites, is able to modulate the hormonal response of the pituitary to hypothalamic regulators. It can enhance pituitary prolactin release and induce GH secretion. These effects could help explain some of the side effects observed in prolonged DHEA treatments in vivo and should be taken into account when considering its use in human clinical trials.

Free access

C Suarez, I Garcia Tornadu, W Khalil, and D Becu-Villalobos

The physiological importance of and therapeutic interest in dehydroepiandrosterone (DHEA) has been predominantly in relation to its action as an inhibitor of the promotion and progression of several kinds of tumours, including those of breast, prostate, lung, colon, liver and skin tissues. The aim of the present study was to determine the role of DHEA in diethylstilboestrol (DES)-induced pituitary hyperplasia. Female Sprague-Dawley rats were divided into four treatment groups: DES (implanted s.c. with a 20 mg DES pellet), DHEA (two 50 mg DHEA pellets), DHEA/DES (both DHEA and DES pellets), and controls (not implanted). Every week, all rats were weighed and cycled, and jugular blood samples were obtained. After 7 weeks, rats were killed. Hypophyses were removed and weighed, and serum prolactin, GH, IGF-I and leptin levels were assayed by RIA. DHEA cotreatment reduced pituitary enlargement by 39% in DES-treated rats. It also reduced the hyperprolactinaemia (280.4+/-43.6 ng/ml for DHEA/DES vs 823.5+/- 127.1 ng/ml for DES) and partially reversed the loss of body weight induced by DES. DHEA treatment did not modify the effects of DES on serum GH, IGF-I and leptin levels. But DHEA per se also increased pituitary weight and induced hyperprolactinaemia, although to a lesser degree than DES. We conclude that DHEA administration has beneficial effects on oestrogen-induced pituitary hyperplasia and hyperprolactinaemia, but the fact that DHEA per se also induces diverse hormonal effects and a slight pituitary enlargement limits its use as a possible therapeutic drug.