Search Results

You are looking at 1 - 1 of 1 items for

  • Author: CF Yang x
  • Refine by Access: All content x
Clear All Modify Search
Free access

JY Wu, SG Shu, CF Yang, CC Lee, and FJ Tsai

Total iodide organification defect (TIOD), where the iodide in the thyroid gland cannot be oxidized and/or bound to the protein, is caused by a defect in the thyroid peroxidase (TPO) gene. Single strand conformation polymorphism analysis was used to screen for mutations in the TPO gene from five unrelated TIOD patients in Taiwan, and five novel mutations were detected. Three of these were frameshift mutations: a single T insertion between nucleotide position 2268 and 2269 (c.2268-2269 insT) in exon 13 and two single C deletions at nucleotide positions 843 (c.843 delC) and 2413 (c.2413 delC) in exon 8 and 14 respectively. The other two were single nucleotide substitutions (c.G1477>A and c.G2386>T) located in exons 9 and 13 respectively. While the former would result in amino acid substitution (Gly493Ser) in the highly conserved region of the TPO polypeptide, the latter would result in either amino acid substitution (Asp796Tyr) or alternative splicing. Of those identified TPO mutations, c.2268-2269 insT was most prevalent and was detected as heterozygous in all but one TIOD patients. All five TIOD patients investigated in this study were compound heterozygous. The method presented in this study could be used for carrier assessment and mutation analysis of newly identified TIOD patients.