Search Results

You are looking at 1 - 2 of 2 items for

  • Author: CG Ostenson x
  • Refine by Access: All content x
Clear All Modify Search
Free access

T Ahmad, C Ohlsson, M Saaf, CG Ostenson, and A Kreicbergs

We characterized appendicular and axial bones in rats with type-2 diabetes in five female Goto-Kakizaki (GK) rats, a strain developed from the Wistar rat showing spontaneous type-2 diabetes, and five age- and sex-matched non-diabetic Wistar rats. The humerus, tibia, metatarsals and vertebral bodies were analysed by peripheral quantitative computerized tomography (pQCT). In diabetic rats, the height of the vertebral bodies and length of the humerus were decreased while the length of the metatarsals was increased. A decreased cross-sectional area was found in the vertebral end-plate region and the tibial metaphysis. Notably, the diaphysis in all long bones showed expansion of periosteal and endosteal circumference. In tibia this resulted in increased cortical thickness, whereas in humerus and metatarsal it was unchanged. Areal moment of inertia was increased in all diaphyses suggesting greater bending strength. The most conspicuous finding in diabetic rats pertained to trabecular osteopenia. Thus, trabecular bone mineral density was significantly reduced in all bones examined, by 33-53%. Our pQCT study of axial and appendicular bones suggests that the typical feature of diabetic osteopathy in the GK rat is loss of trabecular bone and expansion of the diaphysis. The loss of metaphyseal trabecular bone if also present in diabetic patients may prove to underlie the susceptibility to periarticular fracture and Charcot arthropathy. The findings suggest that the risk of fracture in diabetes varies according to the specific sub-regions of a bone. The approach described may prove to be useful in the early detection of osteopathy in diabetic patients who may be amenable to preventive treatment.

Free access

PC Guest, SM Abdel-Halim, DJ Gross, A Clark, V Poitout, R Amaria, CG Ostenson, and JC Hutton

The biosynthesis and processing of proinsulin was investigated in the diabetic Goto-Kakizaki (GK) rat. Immunofluorescence microscopy comparing GK and Wistar control rat pancreata revealed marked changes in the distribution of alpha-cells and pronounced beta-cell heterogeneity in the expression patterns of insulin, prohormone convertases PC1, PC2, carboxypeptidase E (CPE) and the PC-binding proteins 7B2 and ProSAAS. Western blot analyses of isolated islets revealed little difference in PC1 and CPE expression but PC2 immunoreactivity was markedly lower in the GK islets. The processing of the PC2-dependent substrate chromogranin A was reduced as evidenced by the appearance of intermediates. No differences were seen in the biosynthesis and post-translational modification of PC1, PC2 or CPE following incubation of islets in 16.7 mM glucose, but incubation in 3.3 mM glucose resulted in decreased PC2 biosynthesis in the GK islets. The rates of biosynthesis, processing and secretion of newly synthesized (pro)insulin were comparable. Circulating insulin immunoreactivity in both Wistar and GK rats was predominantly insulin 1 and 2 in the expected ratios with no (pro)insulin evident. Thus, the marked changes in islet morphology and PC2 expression did not impact the rate or extent of proinsulin processing either in vitro or in vivo in this experimental model.