Search Results
You are looking at 1 - 2 of 2 items for
- Author: CM Hoogerbrugge x
- Refine by access: All content x
Search for other papers by JA Koedam in
Google Scholar
PubMed
Search for other papers by CM Hoogerbrugge in
Google Scholar
PubMed
Search for other papers by SC Van Buul-Offers in
Google Scholar
PubMed
Cartilage is a primary target tissue for the IGFs. The mitogenic activity of these peptides is regulated by a family of high-affinity IGF-binding proteins (IGFBP-1 to -6). We characterized the IGFBPs produced by cultured chondrocytes derived from rib cartilage of prepubertal rabbits. Culture medium, which had been conditioned by these cells for 48 h showed bands of 22 kDa, 24 kDa and a 31/32 kDa doublet by Western ligand blotting with [(125)I]IGF-II. When the cells were grown in the presence of increasing amounts of IGF-I or IGF-II, the 31/32 kDa doublet increased in intensity (reaching a plateau of about 11-fold stimulation between 2 and 10 nM IGF-I). The 22 kDa and 24 kDa bands increased only slightly while a 26 kDa band became faintly visible. By Western immunoblotting the 31/32 kDa doublet was identified as IGFBP-5. An IGF-I analog with reduced affinity for IGFBPs, Long-R3 IGF-I, also induced IGFBP-5, while insulin was less effective (2.2-fold stimulation at 10 nM). IGF-I protected IGFBP-5 against proteolytic degradation by conditioned medium. IGF-I also enhanced the level of IGFBP-5 mRNA. LY294002, a specific inhibitor of the intracellular signaling molecule phosphatidylinositol 3-kinase, inhibited stimulation of IGFBP-5 by IGF-I. Dexamethasone suppressed IGFBP-5 (by 70% at 20 nM) but, at the same time, a 39/41 kDa doublet (presumably IGFBP-3) was induced. IGFBP-5 has been shown in several cell types to enhance the mitogenic activity of IGF-I. IGFBP-3 generally acts as a growth inhibitor. Therefore, the differential effects of dexamethasone on these regulatory proteins could account, at least in part, for the growth-arresting effect of this glucocorticoid.
Search for other papers by JA Koedam in
Google Scholar
PubMed
Search for other papers by CM Hoogerbrugge in
Google Scholar
PubMed
Search for other papers by SC van Buul-Offers in
Google Scholar
PubMed
Partial proteolysis of insulin-like growth factor-binding protein-3 (IGFBP-3) lowers its affinity for IGFs. Presumably, this leads to destabilization of the ternary IGF-IGFBP-3-acid-labile subunit complex in the circulation and an increased bioavailability of IGFs. We investigated the effect of GH on IGFBP-3 proteolysis by comparing serum from normal mice and GH-deficient dwarf mice. While normal mouse serum degraded 125I-IGFBP-3, this activity declined with age. In contrast, serum from dwarf mice displayed strong proteolytic activity at all ages tested (up to 10 weeks). In dwarf mice of 4 weeks and older, this activity could not be inhibited by EDTA and 1,10-phenanthroline, indicating the presence of a divalent cation-independent protease. Prolonged treatment with GH (4 weeks) did not decrease the overall potency of the serum to degrade IGFBP-3, but partially restored the ability of EDTA to inhibit IGFBP-3 protease activity. GH deficiency therefore appears to induce a new kind of IGFBP-3 protease. Similarly, serum from hypophysectomized rats displayed enhanced IGFBP-3 protease activity compared with control rat serum. These results suggest that a protease induced under conditions of severe GH deficiency may contribute to making IGFs optimally available to the tissues.