Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Carol Paddon x
  • Refine by access: All content x
Clear All Modify Search
Lei Zhang School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Lei Zhang in
Google Scholar
PubMed
Close
,
Carol Paddon School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Carol Paddon in
Google Scholar
PubMed
Close
,
Mark D Lewis School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Mark D Lewis in
Google Scholar
PubMed
Close
,
Fiona Grennan-Jones School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Fiona Grennan-Jones in
Google Scholar
PubMed
Close
, and
Marian Ludgate School of Medicine, Centre for Endocrine and Diabetes Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK

Search for other papers by Marian Ludgate in
Google Scholar
PubMed
Close

Since TSH receptor (TSHR) expression increases during adipogenesis and signals via cAMP/phospho-cAMP-response element binding protein (CREB), reported to be necessary and sufficient for adipogenesis, we hypothesised that TSHR activation would induce preadipocyte differentiation. Retroviral vectors introduced constitutively active TSHR (TSHR*) into 3T3L1 preadipocytes; despite increased cAMP (RIA) and phospho-CREB (western blot) there was no spontaneous adipogenesis (assessed morphologically, using oil red O and QPCR measurement of adipogenesis markers). We speculated that Gβγ signalling may be inhibitory but failed to induce adipogenesis using activated Gsα (gsp*). Inhibition of phosphodiesterases did not promote adipogenesis in TSHR* or gsp* populations. Furthermore, differentiation induced by adipogenic medium with pioglitazone was reduced in TSHR* and abolished in gsp* expressing 3T3L1 cells. TSHR* and gsp* did not inactivate PPARγ (PPARG as listed in the HUGO database) by phosphorylation but expression of PPARγ1 was reduced and PPARγ2 undetectable in gsp*. FOXO1 phosphorylation (required to inactivate this repressor of adipogenesis) was lowest in gsp* despite the activation of AKT by phosphorylation. PROF is a mediator that facilitates FOXO1 phosphorylation by phospho-Akt. Its transcript levels remained constantly low in the gsp* population. In most measurements, the TSHR* cells were between the gsp* and control 3T3L1 preadipocytes. The enhanced down-regulation of PREF1 (adipogenesis inhibitor) permits retention of some adipogenic potential in the TSHR* population. We conclude that Gsα signalling impedes FOXO1 phosphorylation and thus inhibits PPARγ transcription and the alternative promoter usage required to generate PPARγ2, the fat-specific transcription factor necessary for adipogenesis.

Open access