Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Chang Shan x
  • All content x
Clear All Modify Search
Restricted access

Chang Shan, Jiang Yue, and Wei Liu

Bone is emerging as a versatile endocrine organ and its interactions with apparently unrelated organs are being more widely recognized. Osteocalcin (OCN), a polypeptide hormone secreted by osteoblasts, has been found to exert multiple endocrine functions through its metabolically active form, uncarboxylated OCN (uOCN). Mounting evidence has shown that following its binding to G-protein coupled receptor 6a (Gprc6a) in the peripheral tissues, uOCN acts on pancreatic β cells to increase insulin secretion, and on muscle and white adipose tissue to promote glucose and lipid metabolism. More strikingly, researchers have found a surprising role of uOCN in testicular function to facilitating testosterone biosynthesis and regulating male fertility via a pancreas-bone-gonadal axis. However, the detailed functional mechanisms of uOCN on the hypothalamic-pituitary-gonadal axis or the pancreas-bone-gonadal axis are not fully understood. Besides highlighting the regulatory mechanisms of uOCN in the central nervous system, hypothalamus and pituitary, we also discuss its role in male as well as female fertility and its potential clinical implications in some reproductive endocrine diseases and pubertal developmental disorders.

Free access

C Y Shan, J H Yang, Y Kong, X Y Wang, M Y Zheng, Y G Xu, Y Wang, H Z Ren, B C Chang, and L M Chen

For centuries, Berberine has been used in the treatment of enteritis in China, and it is also known to have anti-hyperglycemic effects in type 2 diabetic patients. However, as Berberine is insoluble and rarely absorbed in gastrointestinal tract, the mechanism by which it works is unclear. We hypothesized that it may act locally by ameliorating intestinal barrier abnormalities and endotoxemia. A high-fat diet combined with low-dose streptozotocin was used to induce type 2 diabetes in male Sprague Dawley rats. Berberine (100 mg/kg) was administered by lavage to diabetic rats for 2 weeks and saline was given to controls. Hyperinsulinemia and insulin resistance improved in the Berberine group, although there was no significant decrease in blood glucose. Berberine treatment also led to a notable restoration of intestinal villi/mucosa structure and less infiltration of inflammatory cells, along with a decrease in plasma lipopolysaccharide (LPS) level. Tight junction protein zonula occludens 1 (ZO1) was also decreased in diabetic rats but was restored by Berberine treatment. Glutamine-induced glucagon-like peptide 2 (GLP2) secretion from ileal tissue decreased dramatically in the diabetic group but was restored by Berberine treatment. Fasting insulin, insulin resistance index, plasma LPS level, and ZO1 expression were significantly correlated with GLP2 level. In type 2 diabetic rats, Berberine treatment not only augments GLP2 secretion and improves diabetes but is also effective in repairing the damaged intestinal mucosa, restoring intestinal permeability, and improving endotoxemia. Whether these effects are mechanistically related will require further studies, but they certainly support the hypothesis that Berberine acts via modulation of intestinal function.