Search Results

You are looking at 1 - 7 of 7 items for

  • Author: Chaodong Wu x
Clear All Modify Search
Free access

Rachel Botchlett, Shih-Lung Woo, Mengyang Liu, Ya Pei, Xin Guo, Honggui Li and Chaodong Wu

Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscles, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb the local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in controlling the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis.

Restricted access

Wanbao Yang, Hui Yan, Quan Pan, James Zheng Shen, Fenghua Zhou, Chaodong Wu, Yuxiang Sun and Shaodong Guo

Glucagon promotes hepatic glucose production maintaining glucose homeostasis in the fasting state. Glucagon maintains at high level in both diabetic animals and human, contributing to hyperglycemia. Mitochondria, a major place for glucose oxidation, are dysfunctional in diabetic condition. However, whether hepatic mitochondrial function can be affected by glucagon remains unknown. Recently, we reported that FOXO1 is an important mediator in glucagon signaling in control of glucose homeostasis. In this study, we further assessed the role of FOXO1 in the action of glucagon in the regulation of hepatic mitochondrial function. We found that glucagon decreased the heme production in a FOXO1-dependent manner, suppressed heme-dependent complex III (UQCRC1) and complex IV (MT-CO1) and inhibited hepatic mitochondrial function. However, the suppression of mitochondrial function by glucagon was largely rescued by deleting the Foxo1 gene in hepatocytes. Glucagon tends to reduce hepatic mitochondrial biogenesis by attenuating the expression of NRF1, TFAM and MFN2, which is mediated by FOXO1. In db/db mice, we found that hepatic mitochondrial function was suppressed and expression levels of UQCRC1, MT-CO1, NRF1 and TFAM were downregulated in the liver. These findings suggest that hepatic mitochondrial function can be impaired when hyperglucagonemia occurs in the patients with diabetes mellitus, resulting in organ failure.

Free access

Xiaoqin Shi, Xinyu Li, Yi Hou, Xuemei Cao, Yuyao Zhang, Heng Wang, Hongyin Wang, Chuan Peng, Jibin Li, Qifu Li, Chaodong Wu and Xiaoqiu Xiao

Parental history with obesity or diabetes will increase the risk for developing metabolic diseases in offspring. However, literatures as to transgenerational inheritance of metabolic dysfunctions through male lineage are relatively scarce. In the current study, we aimed to evaluate influences of paternal hyperglycemia on metabolic phenotypes in offspring. Male SD rats were i.p. injected with streptozotocin (STZ) or citrate buffer (CB, as control). STZ-injected rats with glucose levels higher than 16.7 mM were selected to breed with normal female rats. Offspring from STZ or CB treated fathers (STZ-O and CB-O) were maintained in the identical condition. We monitored body weight and food intake, and tests of glucose and insulin tolerance (GTTs and ITTs), fasting–refeeding and cold exposure were performed. Expression of factors involved in hypothalamic feeding and brown adipose tissue (BAT) thermogenic activity was performed by real-time PCR and Western blot. Adult STZ-O were heavier than CB-O. Impairment of GTTs was observed in STZ-O compared with CB-O at 22 and 32 weeks of age; ITTs results showed decreased insulin sensitivity in STZ-O. Daily food intake and accumulated food intake during 12-h refeeding after fasting were significantly higher in STZ-O. UCP1 levels were downregulated in BAT from STZ-O at room temperature and cold exposure. Finally, STZ-O rats showed suppressed leptin signaling in the hypothalamus as evidenced by upregulated SOCS3, reduced phosphorylation of STAT3, impaired processing POMC and decreased α-MSH production. Our study revealed that paternal hyperglycemia predisposes offspring to developing obesity, which is possibly associated with impaired hypothalamic leptin signaling.

Free access

Qiong Lv, Rufei Gao, Chuan Peng, Juan Yi, Lulu Liu, Shumin Yang, Danting Li, Jinbo Hu, Ting Luo, Mei Mei, Ying Song, Chaodong Wu, Xiaoqiu Xiao and Qifu Li

Bisphenol A (BPA), one of the most common environmental endocrine disruptors, is considered to promote hepatic lipid deposition. However, the mechanism has not been fully elucidated. The polarization of Kupffer cells (KCs) plays an important role in hepatic inflammation by promoting pro-inflammatory M1 phenotype (M1KCs), which contributes to dysregulated lipid metabolism. The purpose of this study is to investigate the role of KC polarization in BPA-induced hepatosteatosis in male mice. In this study, we examined hepatic lipid contents and quantified M1KC in BPA-treated CD1 mice, and further explored the interaction between KCs and hepatocytes using conditional HepG2 cell culture. BPA treatment significantly increased hepatic fat contents in CD1 mice, accompanied by increased number of pro-inflammatory M1KCs and enhanced secretion of inflammatory cytokines. Increased lipid contents were also observed in HepG2 cells treated with BPA. Interestingly, higher TG contents were observed in HepaG2 cells treated with conditional media from BPA-treated KCs, compared with those treated with BPA directly. Incubation of KCs with BPA promoted the polarization of KCs to pro-inflammatory M1 dominant subtypes, which was blocked by estrogen antagonist ICI182780. Taken together, our results revealed that M1KCs polarization is involved in BPA-induced hepatic fat deposition, which is possibly associated with the estrogen receptor signaling pathway.

Restricted access

Ya Pei, Honggui Li, Yuli Cai, Jing Zhou, Xianjun Luo, Linqiang Ma, Kelly McDaniel, Tianshu Zeng, Yanming Chen, Xiaoxian Qian, Yuqing Huo, Shannon Glaser, Fanyin Meng, Gianfranco Alpini, Lulu Chen and Chaodong Wu

Adenosine 2A receptor (A2AR) exerts anti-inflammatory effects. However, the role of A2AR in obesity-associated adipose tissue inflammation remains to be elucidated. The present study examined the expression of A2AR in adipose tissue of mice with diet-induced obesity and determined the effect of A2AR disruption on the status of obesity-associated adipose tissue inflammation. WT C57BL/6J mice and A2AR-disrupted mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity and adipose tissue inflammation. In vitro, bone marrow-derived macrophages from A2AR-disrupted mice and WT control mice were treated with palmitate and examined for macrophage proinflammatory activation. Compared with that of low-fat diet (LFD)-fed WT mice, A2AR expression in adipose tissue of HFD-fed WT mice was increased significantly and was present predominantly in adipose tissue macrophages. The increase in adipose tissue A2AR expression in HFD-fed mice was accompanied with increased phosphorylation states of c-Jun N-terminal kinase 1 p46 and nuclear factor kappa B p65 and mRNA levels of interleukin (Il)-1beta, Il6 and tumor necrosis factor alpha. In A2AR-disrupted mice, HFD feeding induced significant increases in adipose tissue inflammation, indicated by enhanced proinflammatory signaling and increased proinflammatory cytokine expression, and adipose tissue insulin resistance, indicated by a decrease in insulin-stimulated Akt phosphorylation relative to those in WT mice. Lastly, A2AR disruption enhanced palmitate-induced macrophage proinflammatory activation. Taken together, these results suggest that A2AR plays a protective role in obesity-associated adipose tissue inflammation, which is attributable to, in large part, A2AR suppression of macrophage proinflammatory activation.

Restricted access

Jing Zhou, Honggui Li, Yuli Cai, Linqiang Ma, Destiny Matthews, Bangchao Lu, Bilian Zhu, Yanming Chen, Xiaoxian Qian, Xiaoqiu Xiao, Qifu Li, Shaodong Guo, Yuqing Huo, Liang Zhao, Yanan Tian, Qingsheng Li and Chaodong Wu

Adenosine 2A receptor (A2AR) exerts a protective role in obesity-related non-alcoholic fatty liver disease. Here, we examined whether A2AR protects against non-alcoholic steatohepatitis (NASH). In C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in significant weight loss, overt hepatic steatosis, and massive aggregation of macrophages in the liver compared with mice fed a chow diet. MCD feeding also significantly increased the numbers of A2AR-positive macrophages/Kupffer cells in liver sections although decreasing A2AR amount in liver lysates compared with chow diet feeding. Next, MCD-induced NASH phenotype was examined in A2AR-disrupted mice and control mice. Upon MCD feeding, A2AR-disruptd mice and control mice displayed comparable decreases in body weight and fat mass. However, MCD-fed A2AR-disrupted mice revealed greater liver weight and increased severity of hepatic steatosis compared with MCD-fed control mice. Moreover, A2AR-disupted mice displayed increased severity of MCD-induced liver inflammation, indicated by massive aggregation of macrophages and increased phosphorylation states of Jun-N terminal kinase (JNK) p46 and nuclear factor kappa B (NFκB) p65 and mRNA levels of tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6. In vitro, incubation with MCD-mimicking media increased lipopolysaccharide (LPS)-induced phosphorylation states of JNK p46 and/or NFκB p65 and cytokine mRNAs in control macrophages and RAW264.7 cells, but not primary hepatocytes. Additionally, MCD-mimicking media significantly increased lipopolysaccharide-induced phosphorylation states of p38 and NFκB p65 in A2AR-deficient macrophages, but insignificantly decreased lipopolysaccharide-induced phosphorylation states of JNK p46 and NFκB p65 in A2AR-deficient hepatocytes. Collectively, these results suggest that A2AR disruption exacerbates MCD-induced NASH, which is attributable to, in large part, increased inflammatory responses in macrophages.

Restricted access

Jiean Xu, Qiuhua Yang, Xiaoyu Zhang, Zhiping Liu, Yapeng Cao, Lina Wang, Yaqi Zhou, Xianqiu Zeng, Qian Ma, Yiming Xu, Yong Wang, Lei Huang, Zhen Han, Tao Wang, David Stepp, Zsolt Bagi, Chaodong Wu, Mei Hong and Yuqing Huo

Insulin resistance-related disorders are associated with endothelial dysfunction. Accumulating evidence has suggested a role for adenosine signaling in the regulation of endothelial function. Here, we identified a crucial role of endothelial adenosine kinase (ADK) in the regulation of insulin resistance. Feeding mice with a high-fat diet (HFD) markedly enhanced the expression of endothelial Adk. Ablation of endothelial Adk in HFD-fed mice improved glucose tolerance and insulin sensitivity and decreased hepatic steatosis, adipose inflammation and adiposity, which were associated with improved arteriole vasodilation, decreased inflammation and increased adipose angiogenesis. Mechanistically, ADK inhibition or knockdown in human umbilical vein endothelial cells (HUVECs) elevated intracellular adenosine level and increased endothelial nitric oxide synthase (NOS3) activity, resulting in an increase in nitric oxide (NO) production. Antagonism of adenosine receptor A2b abolished ADK-knockdown-enhanced NOS3 expression in HUVECs. Additionally, increased phosphorylation of NOS3 in ADK-knockdown HUVECs was regulated by an adenosine receptor-independent mechanism. These data suggest that Adk-deficiency-elevated intracellular adenosine in endothelial cells ameliorates diet-induced insulin resistance and metabolic disorders, and this is associated with an enhancement of NO production caused by increased NOS3 expression and activation. Therefore, ADK is a potential target for the prevention and treatment of metabolic disorders associated with insulin resistance.