Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Chih-Chang Wei x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Chun-Hsien Chu, Bor-Show Tzang, Li-Mien Chen, Chia-Hua Kuo, Yi-Chang Cheng, Ling-Yun Chen, Fuu-Jen Tsai, Chang-Hai Tsai, Wei-Wen Kuo, and Chih-Yang Huang

The role played by IGF-II in signal transduction through the IGF-II/mannose-6-phosphate receptor (IGF2R) in heart tissue has been poorly understood. In our previous studies, we detected an increased expression of IGF-II and IGF2R in cardiomyocytes that had undergone pathological hypertrophy. We hypothesized that after binding with IGF-II, IGF2R may trigger intracellular signaling cascades involved in the progression of pathologically cardiac hypertrophy. In this study, we used immunohistochemical analysis of the human cardiovascular tissue array to detect expression of IGF2R. In our study of H9c2 cardiomyoblast cell cultures, we used the rhodamine phalloidin staining to measure the cell hypertrophy and western blot to measure the expression of cardiac hypertrophy markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in cells treated with IGF-II. We found that a significant association between IGF2R overexpression and myocardial infarction. The treatment of H9c2 cardiomyoblast cells with IGF-II not only induced cell hypertrophy but also increased the protein level of ANP and BNP. Using Leu27IGF-II, an analog of IGF-II which interacts selectively with the IGF2R, to specifically activate IGF2R signaling cascades, we found that binding of Leu27IGF-II to IGF2R led to an increase in the phosphorylation of protein Kinase C (PKC)-α and calcium/calmodulin-dependent protein kinase II (CaMKII) in a Gαq-dependent manner. By the inhibition of PKC-α/CaMKII activity, we found that IGF-II and Leu27IGF-II-induced cell hypertrophy and upregulation of ANP and BNP were significantly suppressed. Taken together, this study provides a new insight into the effects of the IGF2R and its downstream signaling in cardiac hypertrophy. The suppression of IGF2R signaling pathways may be a good strategy to prevent the progression of pathological hypertrophy.

Free access

Tusty-Jiuan Hsieh, Pierre Fustier, Chih-Chang Wei, Shao-Ling Zhang, Janos G Filep, Shiow-Shiu Tang, Julie R Ingelfinger, I George Fantus, Pavel Hamet, and John S D Chan

We reported previously that insulin inhibits the stimulatory effect of high glucose on the expression of angiotensinogen (ANG) gene in both rat immortalized renal proximal tubular cells (IRPTCs) and non-diabetic rat renal proximal tubular cells (RPTCs), but has no effect in diabetic rat RPTCs. In the present study we investigated whether hyperglycaemia-induced resistance to the insulin-induced inhibition of expression of the ANG gene is mediated via the generation of reactive oxygen species (ROS) in RPTCs. Rat IRPTCs were cultured for 2 weeks in high-glucose (25 mM) or normal-glucose (5 mM) medium plus angiotensin II (Ang II) with or without a superoxide scavenger (tiron), or inhibitors of: NADPH oxidase (diphenylene iodinium, DPI), Ang II type 1 and 2 receptors (losartan and PD123319), angiotensin-converting enzyme (perindopril), protein kinase C (GF 109203X), or glutamine:fructose-6-phosphate amino-transferase (azaserine). Cellular generation of ROS, and ANG and renin mRNA levels were assessed by lucigenin assay and specific reverse transcriptase-PCR respectively. Phosphorylation of p44/42 mitogen-activated protein kinase (p44/42 MAPK) was evaluated by western blotting. Prolonged exposure of IRPTCs to high concentrations of glucose or Ang II evoked generation of ROS and resistance to the insulin-induced inhibition of expression of the ANG gene and of p44/42 MAPK phosphorylation. Co-incubation of IRPTCs with tiron, DPI, losartan, PD123319, perindopril, GF 109203X or azaserine prevented ROS generation, restoring the inhibitory action of insulin on ANG gene expression and on p44/42 MAPK phosphorylation. In conclusion, our studies demonstrate that blockade of both ROS generation and activation of the intrarenal renin–angiotensin system improves the inhibitory action of insulin on ANG gene expression in IRPTCs in conditions of high glucose.