Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Chuan Peng x
Clear All Modify Search
Free access

Xiaoqin Shi, Xinyu Li, Yi Hou, Xuemei Cao, Yuyao Zhang, Heng Wang, Hongyin Wang, Chuan Peng, Jibin Li, Qifu Li, Chaodong Wu and Xiaoqiu Xiao

Parental history with obesity or diabetes will increase the risk for developing metabolic diseases in offspring. However, literatures as to transgenerational inheritance of metabolic dysfunctions through male lineage are relatively scarce. In the current study, we aimed to evaluate influences of paternal hyperglycemia on metabolic phenotypes in offspring. Male SD rats were i.p. injected with streptozotocin (STZ) or citrate buffer (CB, as control). STZ-injected rats with glucose levels higher than 16.7 mM were selected to breed with normal female rats. Offspring from STZ or CB treated fathers (STZ-O and CB-O) were maintained in the identical condition. We monitored body weight and food intake, and tests of glucose and insulin tolerance (GTTs and ITTs), fasting–refeeding and cold exposure were performed. Expression of factors involved in hypothalamic feeding and brown adipose tissue (BAT) thermogenic activity was performed by real-time PCR and Western blot. Adult STZ-O were heavier than CB-O. Impairment of GTTs was observed in STZ-O compared with CB-O at 22 and 32 weeks of age; ITTs results showed decreased insulin sensitivity in STZ-O. Daily food intake and accumulated food intake during 12-h refeeding after fasting were significantly higher in STZ-O. UCP1 levels were downregulated in BAT from STZ-O at room temperature and cold exposure. Finally, STZ-O rats showed suppressed leptin signaling in the hypothalamus as evidenced by upregulated SOCS3, reduced phosphorylation of STAT3, impaired processing POMC and decreased α-MSH production. Our study revealed that paternal hyperglycemia predisposes offspring to developing obesity, which is possibly associated with impaired hypothalamic leptin signaling.

Full access

Shiyun Tong, Shumin Yang, Ting Li, Rufei Gao, Jinbo Hu, Ting Luo, Hua Qing, Qianna Zhen, Renzhi Hu, Xuan Li, Yi Yang, Chuan Peng and Qifu Li

Bisphenol-A (BPA) is a common environmental pollutant, and exposure to it is associated with proteinuria and may predict the progression of chronic kidney disease; however, the mechanism is not clear. Neutrophil extracellular traps (NETs) are a DNA skeleton coated with various proteases, and it is associated with various types of autoimmune nephritis. In this study, we examine whether NETs is involved in BPA-induced chronic kidney injury. In vivo, BPA exposure resulted in impaired renal function and altered renal morphology, including glomerular mesangial matrix expansion and increased renal interstitial fibroblast markers. Meanwhile, more dsDNA can be detected in the serum, and the NETs-associated proteins, MPO and citH3 were deposited in the renal system. In vitro, BPA and NETs treatment caused podocyte injury, a loss of marker proteins and disorder in the actin skeleton. After NETs inhibition via DNase administration, BPA-induced injuries were significantly relieved. In conclusion, the increase of NETosis in circulation and the renal system during BPA exposure suggests that NETs may be involved in BPA-induced chronic kidney injury.

Free access

Qiong Lv, Rufei Gao, Chuan Peng, Juan Yi, Lulu Liu, Shumin Yang, Danting Li, Jinbo Hu, Ting Luo, Mei Mei, Ying Song, Chaodong Wu, Xiaoqiu Xiao and Qifu Li

Bisphenol A (BPA), one of the most common environmental endocrine disruptors, is considered to promote hepatic lipid deposition. However, the mechanism has not been fully elucidated. The polarization of Kupffer cells (KCs) plays an important role in hepatic inflammation by promoting pro-inflammatory M1 phenotype (M1KCs), which contributes to dysregulated lipid metabolism. The purpose of this study is to investigate the role of KC polarization in BPA-induced hepatosteatosis in male mice. In this study, we examined hepatic lipid contents and quantified M1KC in BPA-treated CD1 mice, and further explored the interaction between KCs and hepatocytes using conditional HepG2 cell culture. BPA treatment significantly increased hepatic fat contents in CD1 mice, accompanied by increased number of pro-inflammatory M1KCs and enhanced secretion of inflammatory cytokines. Increased lipid contents were also observed in HepG2 cells treated with BPA. Interestingly, higher TG contents were observed in HepaG2 cells treated with conditional media from BPA-treated KCs, compared with those treated with BPA directly. Incubation of KCs with BPA promoted the polarization of KCs to pro-inflammatory M1 dominant subtypes, which was blocked by estrogen antagonist ICI182780. Taken together, our results revealed that M1KCs polarization is involved in BPA-induced hepatic fat deposition, which is possibly associated with the estrogen receptor signaling pathway.

Full access

Wenqi Chen, Siyu Lu, Chengshun Yang, Na Li, Xuemei Chen, Junlin He, Xueqing Liu, Yubin Ding, Chao Tong, Chuan Peng, Chen Zhang, Yan Su, Yingxiong Wang and Rufei Gao

Previous research on the role of insulin has focused on metabolism. This study investigated the effect of insulin on angiogenesis in endometrial decidualization. High insulin-treated mouse model was constructed by subcutaneous injection of insulin. Venous blood glucose, serum insulin, P4, E2, FSH and LH levels in the pregnant mice were detected by ELISA. Decidual markers, angiogenesis factors and decidual vascular network were detected during decidualization in the pregnant mouse model and an artificially induced decidualization mouse model. Tube formation ability and angiogenesis factors expression were also detected in high insulin-treated HUVECS cells. To confirm whether autophagy participates in hyperinsulinemia-impaired decidual angiogenesis, autophagy was detected in vivo and in vitro. During decidualization, in the condition of high insulin, serum insulin and blood glucose were significantly higher, while ovarian steroid hormones were also disordered (P < 0.05), decidual markers BMP2 and PRL were significantly lower (P < 0.05). Uterine CD34 staining showed that the size of the vascular sinus was significantly smaller than that in control. Endometrial VEGFA was significantly decreased after treatment with high insulin in vivo and in vitro (P < 0.05), whereas ANG-1 and TIE2 expression was significantly increased (P < 0.05). In addition, aberrant expression of autophagy markers revealed that autophagy participates in endometrial angiogenesis during decidualization (P < 0.05). After treatment with the autophagy inhibitor 3-MA in HUVEC, the originally damaged cell tube formation ability and VEGFA expression were repaired. This study suggests that endometrial angiogenesis during decidualization was impaired by hyperinsulinemia in early pregnant mice.